"STUDY ON THE STRUCTURE PROPERTIES OF M-FUZZY GROUPS AND FUZZY G-MODULES"

UGC MINOR RESEARCH PROJECT
MRP(S)-0634/13-14/KLCA033/UGC- SWRO dated 28.03.2014

(2014-16)

SUBMITTED TO

UNIVERSITY GRANTS COMMISSION SOUTH WESTERN REGIONAL OFFICE BANGALORE BY

MS. ALPHY JOSE
(PRINCIPAL INVESTIGATOR)
ASST. PROFESSOR, DEPT. OF MATHEMATICS

SUMMARY OF THE PROJECT

TOPIC: "STUDY ON THE STRUCTURE PROPERTIES OF M-FUZZY GROUPS AND FUZZY G-MODULES"

In 1965 Zadeh introduced the notion of a fuzzy subset μ of a non empty set X as a function from X to unit interval $I=[0,1]$. The notion of fuzzy groups was introduced by Rosenfeld in 1971. Fuzzification of classical concepts such as groups, rings, modules etc. opened up a new insight in the field of mathematical sciences.

Definition: Fuzzy Group

A fuzzy subset μ on a group G is called a fuzzy subgroup of G if
(1) $\mu(x y) \geq \mu(x) \wedge \mu(y)$
(2) $\mu(x)=\mu\left(x^{-1}\right)$

Proposition:

Let μ be a fuzzy subgroup of a group G. Then $\mu_{*}=\{x \in G: \mu(x)=\mu(e)\}$ where e is the identity in G, will be a subgroup of G.

Note: If μ is a fuzzy set then the $\alpha-c u t$ of μ is defined as the crisp set

$$
\mu_{\alpha}=\{x \in G: \mu(x) \geq \alpha\}
$$

Proposition:

If μ is a fuzzy subgroup of a group G, then each $\alpha-$ cutof μ is a subgroup of G.

Definition: Support of $\boldsymbol{\mu}$

The support of a fuzzy set μ is defined as $\left.\mu^{*}=\{x \in G: \mu(x)>0)\right\}$

Theorem:

The support of a fuzzy subgroup μ on is also a fuzzy subgroup

Definition: M-group

Let G be a group and M be any set. G is called an M-group if for any $g \in G$ and $m \in M$ there exists a product $m g \in G$ such that $m(g h)=(m g)(m h)$ for all $g, h \in G \& m \in M$.

Example 1: Let $G=\left(R^{n},+\right)$ and M be a subset of natural number.
Define for $m \in M, x=\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots x_{n}\right) \in R^{n}, m x=\left(m x_{1}, m x_{2}, \ldots \ldots \ldots \ldots x_{n}\right) \in R^{n}$.
Then G is an M-group.

Definition: M- fuzzy group

Let G be a M-group and μ be a fuzzy group on $G . \mu$ is called an M-fuzzy group if $\mu(m g) \geq \mu(g)$ for all $g \in G \& m \in M$.
Example: Let $G=\left(R^{n},+\right)$ be the M-group defined in Example 1. Define a fuzzy group μ on G by $\mu(x)= \begin{cases}0, & \text { if at least one } x_{j} \neq 0 \\ 1, & \text { otherwise }\end{cases}$
Then $\mu(m x)=\mu(x), x \in R^{n}$ and $m \in M$. Hence μ is an M-fuzzy group on G.

Proposition:

If μ is a M-fuzzy group on G , then each $\alpha-$ cut μ_{α} of μ is a M-group.

Proof:

Let $m \in M, g \in \mu_{\alpha}$
$\mu(m g) \geq \mu(g) \geq \alpha \Rightarrow m g \in \mu_{\alpha}$
Also $m(g h)=(m g)(m h) \forall m \in M \& g, h \in G$
Thus $\alpha-$ cut μ_{α} is a M-group which is a subgroup of G.

Proposition:

The support μ^{*} of a M-fuzzy group μ is also a M-group.

Theorem

If μ is a M-fuzzy group on G then μ^{n} is also an M - fuzzy group on G where $\mu^{n}(g)=$ $(\mu(g))^{n} \quad \forall g \in G$

Proposition:

Let G be a M-group and μ, ϑ be two M-fuzzy subgroups on G , then $\mu \cap \vartheta$ is also a Mfuzzy subgroup of G where $(\mu \bigcap \vartheta)(x)=\mu(x) \wedge \vartheta(x)$.

Definition: Normal fuzzy subgroup

A fuzzy subgroup μ of a group G is called Normal fuzzy subgroup if $\mu\left(x^{-1} y x\right) \geq$ $\mu(y) \forall x, y \in G$.

Definition: M-normal fuzzy subgroup

Let G be a M-group. A fuzzy subgroup μ of G is said to be a M-normal fuzzy subgroup of G if μ is a M-fuzzy subgroup and also a normal fuzzy subgroup of G.

Proposition:

Let G be a M-group and μ, ϑ be two M-normal fuzzy subgroups on G, then $\mu \cap \vartheta$ is also a M - normal fuzzy subgroup of G.

Definition: M-homomorphism

If $G \& G^{1}$ are M-groups and f is a homomorphism from G onto G^{1} such that $f(\mathrm{mg})=$ $m f(g)$ for all $m \in M \& g \in G$ then f is called an M-homomorphism.
Example: Let $G=\left(R^{n},+\right)$ be the M-group defined in Example 1. Also $G^{1}=(R,+)$ is an Mgroup with the operation $m(x+y)=m x+m y$ for $m \in M$ and $x, y \in R$.Define $f: R^{n} \rightarrow R$ by $f(x)=\sum_{j=1}^{n} x_{j}$. Then $f(m x)=m . f(x) \forall x \in G$ and $m \in M$ so that f is an M-homomorphism.

Let $G \& G^{1}$ be M-groups and let f be an M-homomorphism from G onto G^{1} and μ be an Mfuzzy group on G. Then $f(\mu)$ is an M- fuzzy group on G^{1} where
$f(\mu)(y)=\vee\left\{\mu(x): x \in f^{-1}(y), y \in R(f)\right\}$. Also if ϑ is a M-fuzzy group on G^{1} then $f^{-1}(\vartheta)$ is a M-fuzzy group on G where $f^{-1}(\vartheta)(x)=\vartheta(f(x))$.

If μ is a M-fuzzy group on G then μ^{n} is also an M - fuzzy group on G where $\mu^{n}=$ $\left\{\left(g,(\mu(g))^{n}\right): g \in G\right\}$.

Definition: G-Module

Let G be a finite group and M be a vector space over the field K which is a subfield of \mathbb{C}. Then M is a G-module if for all $g \in G \& m \in M$ there exists $g m \in M$ such that

1) $e m=m \forall m \in M$ where e is the identity in G
2) $(\mathrm{gh}) m=g(\mathrm{hm}) \forall g \in G \& m \in M$
3) $g\left(k_{1} m_{1}+k_{2} m_{2}\right)=k_{1}\left(g m_{1}+g m_{2}\right)$

Example: Let $G=\{1,-1\} \& M=R^{4}$ over R. Define $g .\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $\left(g x_{1}, g x_{2}, g x_{3}, g x_{4}\right) \in M$ for $g \in G$ and $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in M$. Then M is a G-module.

Definition: Fuzzy G-Module

Let G be a finite group and M be G-module over the field K which is a subfield of C.Then a fuzzy G-module on M is a fuzzy set μ of M such that

1) $\mu(a x+b y) \geq \mu(x) \wedge \mu(y) \forall a, b \in K \& x, y \in M$
2) $\mu(g m) \geq \mu(m) \quad \forall g \in G \& m \in M$

Example: Let M be the G-module defined in previous example.
Define $\mu(x)=\left\{\begin{array}{l}1, \text { if } x_{i}=0 \forall i \\ 1 / 2, \text { if at least one } x_{i} \neq 0\end{array}\right.$ where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in M$. Then μ is a fuzzy Gmodule on M .
Definition: Fuzzy submodule

Let μ be a fuzzy set of a G-module M . Then μ is called a fuzzy submodule of M if

1) $\mu(0)=1$ where 1 is the additive identity in M
2) $\mu(g m) \geq \mu(m) \quad \forall g \in G \& m \in M$
3) $\mu(x+y) \geq \mu(x) \wedge \mu(y) \forall x, y \in M$

Let μ be a fuzzy submodule of a $G-$ module M and if we define $x \equiv y(\bmod \mu)$ $\Leftrightarrow \mu(x-y)=\mu(0)=1$ denoted by $x \mu^{*} y$ then μ^{*} is an equivalence relation. We can easily show that it is reflexive, symmetric and transitive.

Every submodule of a G-module M induces an equivalence relation. Also we can show that if $x \mu^{*} y$ then $\mu(x)=\mu(y)$.

Let $\mu^{*}[x]$ be the equivalence class containing $x \in M$, where M is a G - module. Then $M / \mu=\left\{\mu^{*}[x]: x \in M\right\}$, the set of all equivalence classes. Defining two operations \oplus and $*$ in M / μ as $\mu^{*}[x] \oplus \mu^{*}[y]=\mu^{*}[x+y]$ and $r * \mu^{*}[x]=\mu^{*}[r x]$ where $x, y \in M \& r \in K$ we can make M / μ a vector space over K.

Also $(M / \mu, \oplus, *)$ is a G-module if M is a G-module by defining the product of $\mu^{*}[x] \in M / \mu$ and $g \in G$ as $g \cdot \mu^{*}[x]=\mu^{*}[g x]$.

