"STUDY ON THE STRUCTURE PROPERTIES OF M-FUZZY GROUPS AND FUZZY G-MODULES"

UGC MINOR RESEARCH PROJECT

MRP(S)-0634/13-14/KLCA033/UGC- SWRO dated 28.03.2014

(2014-16)

SUBMITTED TO

UNIVERSITY GRANTS COMMISSION SOUTH WESTERN REGIONAL OFFICE BANGALORE

BY

MS. ALPHY JOSE (PRINCIPAL INVESTIGATOR) ASST. PROFESSOR, DEPT. OF MATHEMATICS LITTLE FLOWER COLLEGE, GURUVAYOOR, KERALA-680103

SUMMARY OF THE PROJECT

TOPIC: "STUDY ON THE STRUCTURE PROPERTIES OF M-FUZZY GROUPS AND FUZZY G-MODULES"

In 1965 Zadeh introduced the notion of a fuzzy subset μ of a non empty set X as a function from X to unit interval I = [0, 1]. The notion of fuzzy groups was introduced by Rosenfeld in 1971. Fuzzification of classical concepts such as groups, rings, modules etc. opened up a new insight in the field of mathematical sciences.

Definition: Fuzzy Group

A fuzzy subset μ on a group G is called a fuzzy subgroup of G if

(1)
$$\mu(xy) \ge \mu(x) \land \mu(y)$$

(2) $\mu(x) = \mu(x^{-1})$

Proposition:

Let μ be a fuzzy subgroup of a group *G*. Then $\mu_* = \{x \in G : \mu(x) = \mu(e)\}$ where e is the identity in *G*, will be a subgroup of *G*.

Note: If μ is a fuzzy set then the $\alpha - cut$ of μ is defined as the crisp set

 $\mu_{\alpha} = \{ x \in G : \mu(x) \ge \alpha \}$

Proposition:

If μ is a fuzzy subgroup of a group G, then each $\alpha - cut$ of μ is a subgroup of G.

Definition: Support of μ

The support of a fuzzy set μ is defined as $\mu^* = \{x \in G : \mu(x) > 0\}$

Theorem:

The support of a fuzzy subgroup μ on is also a fuzzy subgroup

Definition: M-group

Let G be a group and M be any set. G is called an M-group if for any $g \in G$ and $m \in M$ there exists a product $mg \in G$ such that m(gh) = (mg)(mh) for all $g, h \in G \& m \in M$.

Example 1: Let $G = (R^n, +)$ and M be a subset of natural number.

Define for $m \in M$, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $mx = (mx_1, mx_2, \dots, mx_n) \in \mathbb{R}^n$. Then G is an M-group.

Definition: M- fuzzy group

Let G be a M-group and μ be a fuzzy group on G. μ is called an M-fuzzy group if $\mu(mg) \ge \mu(g)$ for all $g \in G \& m \in M$.

Example: Let $G = (R^n, +)$ be the M-group defined in Example 1. Define a fuzzy group μ on G (0) if at least one $x_i \neq 0$

by
$$\mu(x) = \begin{cases} 0, & \text{if at least one } x_j \neq 0 \\ 1, & \text{otherwise} \end{cases}$$

Then $\mu(mx) = \mu(x), x \in \mathbb{R}^n$ and $m \in M$. Hence μ is an M-fuzzy group on G.

Proposition:

If μ is a *M*-fuzzy group on G, then each $\alpha - cut \ \mu_{\alpha}$ of μ is a *M*-group.

Proof:

Let $m \in M$, $g \in \mu_{\alpha}$

 $\mu(mg) \ge \mu(g) \ge \alpha \Rightarrow mg \in \mu_{\alpha}$

Also $m(gh) = (mg)(mh) \ \forall m \in M \& g, h \in G$

Thus $\alpha - cut \mu_{\alpha}$ is a *M*-group which is a subgroup of *G*.

Proposition:

The support μ^* of a *M*-fuzzy group μ is also a *M*-group.

Theorem

If μ is a *M*-fuzzy group on *G* then μ^n is also an *M*-fuzzy group on *G* where $\mu^n(g) =$

$$(\mu(g))^n \quad \forall g \in G$$

Proposition:

Let G be a M-group and μ, ϑ be two M-fuzzy subgroups on G, then $\mu \cap \vartheta$ is also a M-fuzzy subgroup of G where $(\mu \cap \vartheta)(x) = \mu(x) \land \vartheta(x)$.

Definition: Normal fuzzy subgroup

A fuzzy subgroup μ of a group G is called Normal fuzzy subgroup if $\mu(x^{-1}yx) \ge \mu(y) \forall x, y \in G$.

Definition: M-normal fuzzy subgroup

Let G be a M-group. A fuzzy subgroup μ of G is said to be a M-normal fuzzy subgroup of G if μ is a M-fuzzy subgroup and also a normal fuzzy subgroup of G.

Proposition:

Let G be a M-group and μ, ϑ be two M-normal fuzzy subgroups on G, then $\mu \cap \vartheta$ is also a M- normal fuzzy subgroup of G.

Definition: M-homomorphism

If $G \& G^1$ are M-groups and f is a homomorphism from G onto G^1 such that f(mg) = m f(g) for all $m \in M \& g \in G$ then f is called an M-homomorphism.

Example: Let $G = (R^n, +)$ be the M-group defined in Example 1. Also $G^1 = (R, +)$ is an M-group with the operation m(x + y) = mx + my for $m \in M$ and $x, y \in R$. Define $f: R^n \to R$ by $f(x) = \sum_{j=1}^n x_j$. Then f(mx) = m. $f(x) \forall x \in G$ and $m \in M$ so that f is an M-homomorphism.

Let $G \& G^1$ be M-groups and let f be an M-homomorphism from G onto G^1 and μ be an M-fuzzy group on G. Then $f(\mu)$ is an M-fuzzy group on G^1 where

 $f(\mu)(y) = \forall \{\mu(x): x \in f^{-1}(y), y \in R(f)\}$. Also if ϑ is a M-fuzzy group on G^1 then $f^{-1}(\vartheta)$ is a M-fuzzy group on G where $f^{-1}(\vartheta)(x) = \vartheta(f(x))$.

If μ is a M-fuzzy group on *G* then μ^n is also an M- fuzzy group on *G* where $\mu^n = \{(g, (\mu(g))^n) : g \in G\}.$

Definition: G-Module

Let *G* be a finite group and *M* be a vector space over the field *K* which is a subfield of \mathbb{C} . Then *M* is a *G* –module if for all $g \in G \& m \in M$ there exists $gm \in M$ such that

- 1) $em = m \forall m \in M$ where *e* is the identity in *G*
- 2) $(gh)m = g(hm) \ \forall g \in G \& m \in M$
- 3) $g(k_1m_1 + k_2m_2) = k_1(gm_1 + gm_2)$

Example: Let $G = \{1, -1\} \& M = R^4$ over R. Define $g.(x_1, x_2, x_3, x_4) =$

 $(gx_1, gx_2, gx_3, gx_4) \in M$ for $g \in G$ and $(x_1, x_2, x_3, x_4) \in M$. Then M is a G-module.

Definition: Fuzzy G-Module

Let G be a finite group and M be G – module over the field K which is a subfield of C.Then a fuzzy G – module on M is a fuzzy set μ of M such that

- 1) $\mu(ax + by) \ge \mu(x) \land \mu(y) \forall a, b \in K \& x, y \in M$
- 2) $\mu(gm) \ge \mu(m) \quad \forall g \in G \& m \in M$

Example: Let M be the G-module defined in previous example.

Define $\mu(x) = \begin{cases} 1, & \text{if } x_i = 0 \forall i \\ \frac{1}{2}, & \text{if at least one } x_i \neq 0 \end{cases}$ where $(x_1, x_2, x_3, x_4) \in M$. Then μ is a fuzzy G-

module on M.

Definition: Fuzzy submodule

Let μ be a fuzzy set of a G -module M. Then μ is called a fuzzy submodule of M if

- 1) $\mu(0) = 1$ where 1 is the additive identity in M
- 2) $\mu(gm) \ge \mu(m) \quad \forall g \in G \& m \in M$
- 3) $\mu(x+y) \ge \mu(x) \land \mu(y) \forall x, y \in M$

Let μ be a fuzzy submodule of a G – module M and if we define $x \equiv y \pmod{\mu}$ $\Leftrightarrow \mu(x - y) = \mu(0) = 1$ denoted by $x\mu^*y$ then μ^* is an equivalence relation. We can easily show that it is reflexive, symmetric and transitive.

Every submodule of a *G* –module M induces an equivalence relation. Also we can show that if $x\mu^*y$ then $\mu(x) = \mu(y)$.

Let $\mu^*[x]$ be the equivalence class containing $x \in M$, where M is a G – module. Then $M/\mu = \{\mu^*[x]: x \in M\}$, the set of all equivalence classes. Defining two operations \bigoplus and * in M/μ as $\mu^*[x] \oplus \mu^*[y] = \mu^*[x + y]$ and $r * \mu^*[x] = \mu^*[rx]$ where $x, y \in M \& r \in K$ we can make M/μ a vector space over K.

Also $(M/\mu, \oplus, *)$ is a G-module if M is a G-module by defining the product of $\mu^*[x] \in M/\mu$ and $g \in G$ as $g.\mu^*[x] = \mu^*[gx]$.