Subject: Discrete Mathematics

Topic: partial order relations
Name of the teacher: Lisna Thomas
Academic year: 2020-2021

PARTIAL ORDER RELATIONS

Partial Order Relations

A relation R on a set A is called a partial order relation if it satisfies the following three properties:

1. Relation R is Reflexive, i.e. aRa $\forall a \in A$.
2. Relation R is Antisymmetric, i.e., $a R b$ and $b R a \Rightarrow a=b$.
3. Relation R is transitive, i.e., $a R b$ and $b R c \Rightarrow a R c$.

Example1: Show whether the relation $(x, y) \in R$, if, $x \geq y$ defined on the set of + ve integers is a partial order relation.
Solution: Consider the set $A=\{1,2,3,4\}$ containing four + ve integers. Find the relation for this set such as $R=\{(2,1),(3,1)$, $(3,2),(4,1),(4,2),(4,3),(1,1),(2,2),(3,3),(4,4)\}$.

Reflexive: The relation is reflexive as for every $a \in A .(a, a) \in R$, i.e. $(1,1),(2,2),(3,3),(4,4) \in R$.
Antisymmetric: The relation is antisymmetric as whenever (a, b) and $(b, a) \in R$, we have $a=b$.
Transitive: The relation is transitive as whenever (a, b) and $(b, c) \in R$, we have $(a, c) \in R$.
Example: $(4,2) \in R$ and $(2,1) \in R$, implies $(4,1) \in R$.
As the relation is reflexive, antisymmetric and transitive. Hence, it is a partial order relation.

Example2: Show that the relation 'Divides' defined on N is a partial order relation.

Solution:

Reflexive: We have a divides $a, \forall a \in N$. Therefore, relation 'Divides' is reflexive.
Antisymmetric: Let $a, b, c \in N$, such that a divides b. It implies b divides a iff $a=b$. So, the relation is antisymmetric.
Transitive: Let $a, b, c \in N$, such that a divides b and b divides c.
Then a divides c. Hence the relation is transitive. Thus, the relation being reflexive, antisymmetric and transitive, the relation 'divides' is a partial order relation.

Example3: (a) The relation \subseteq of a set of inclusion is a partial ordering or any collection of sets since set inclusion has three desired properties:

1. $A \subseteq A$ for any set A.
2. If $A \subseteq B$ and $B \subseteq A$ then $B=A$.
3. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$
(b) The relation \leq on the set R of real no that is Reflexive, Antisymmetric and transitive.
(c) Relation \leq is a Partial Order Relation.

Partial Order Set (POSET):

The set A together with a partial order relation R on the set A and is denoted by (A, R) is called a partial orders set or POSET

Hasse diagram

A Hasse diagram is a graphical representation of the relation of elements of a partially ordered set (poset) with an implied upward orientation. A point is drawn for each element of the partially ordered set (poset) and joined with the line segment according to the following rules:

- If $p<q$ in the poset, then the point corresponding to p appears/ower in the drawing than the point corresponding to q .
- The two points p and q will be joined by line segment iff p is related to q.

To draw a Hasse diagram, provided set must be a poset.
A poset or partially ordered set A is a pair, (B,) of a set B whose elements are called the vertices of A and obeys following rules:

1. Reflexivity \rightarrow p p p B
2. Anti-symmetric $\rightarrow p$ q and $q p$ iff $p=q$
3. Transitivity \rightarrow if $p q$ and $q r$ then $p r$

Example-1: Draw Hasse diagram for (\{3, 4, 12, 24, 48, 72\}, /)

According to above given question first, we have to find the poset for the divisibility.
Let the set is A .
$A=\{(312),(324),(348),(372),(412),(424),(448),(472),(1224),(1248),(1272),(2448),(24$ 72) \}

So, now the Hasse diagram will be:

In above diagram, 3 and 4 are at same level because they are not related to each other and they are smaller than other elements in the set. The next succeeding element for 3 and 4 is 12 i.e, 12 is divisible by both 3 and 4 . Then 24 is divisible by 3,4 and 12. Hence, it is placed above 12. 24 divides both 48 and 72 but 48 does not divide 72 . Hence 48 and 72 are not joined.

We can see transitivity in our diagram as the level is increasing.

