JESSY.K.BENNY APPICATIONS OF GAUSS'S LAWW 2020-21

APPLICATION'S OF GAUSS'S LAW

FIELD DUE TO NON UNIFORMIY CHARGED SPHERE

The sphere is having non uniform charge distribution. Given that charge density ρ is Proportional to distance from the centre of the sphere

$$
\begin{aligned}
& \rho \infty r \\
& \rho=k r
\end{aligned}
$$

l) Field outside the sphere $(r>R) I$

Let the field to be determined at a distance r which is outside the charge sphere.A Gaussian surface is to be constructed with radius ' r ' which is concentric with the charged sphere of radius R .

Applying Gauss's law,

$$
\begin{equation*}
\int_{\mathrm{G} . \mathrm{S}} \mathrm{E} . \mathrm{da}=\mathrm{Q}_{\mathrm{enc}} \tag{1}
\end{equation*}
$$

عO
For a charged sphere. E and da are in same direction radially outwards

$$
\begin{gather*}
\int_{\mathrm{G} . \mathrm{S}} \mathrm{E} . \mathrm{da}=\int \mathrm{Eda} \tag{2}\\
\mathrm{E} \int_{\mathrm{G} . \mathrm{S}} \mathrm{da}=\mathrm{Q}_{\mathrm{enc}} \\
\varepsilon_{\mathrm{O}} \\
\mathrm{E}_{\mathrm{E}} 4 \square \mathrm{r}^{2}=\mathrm{Q}_{\mathrm{enc}} \tag{3}\\
\varepsilon \mathrm{O} \\
\mathrm{Q}_{\mathrm{enc}}=\int_{\mathrm{v}} \rho \mathrm{~d} \tau \tag{4}\\
\rho=\mathrm{kr} \tag{5}
\end{gather*}
$$

If the volume element $d \tau$ is at a distance r from the sphere then.

$$
\begin{equation*}
\rho=k r^{\prime} \tag{6}
\end{equation*}
$$

In terms of SPC; $d \tau=r^{2} \sin \theta d \theta d r d \phi$
As $d \tau$ is at a distance r,

$$
\begin{align*}
& \quad d \tau=r^{2} \sin \theta d \theta d r^{\prime} d \phi \tag{7}\\
& Q_{e n c}=\int_{v} k r^{\prime} r^{\prime 2} \sin \theta d \theta d r^{\prime} d \phi \tag{8}\\
& =\int_{v} k r^{\prime 3} \sin \theta d \theta d r^{\prime} d \phi=k \int^{R}{ }_{0} r^{\prime 3} d r^{\prime} \int_{{ }_{0}} \sin \theta d \theta \int^{2}{ }_{0} d \phi \\
& =k\left[r^{\prime 4}\right]^{R}{ }_{0} 4 \square=k R^{4} 4 \square \\
& 4 \\
& Q_{\text {enc }}=k \square R^{4}
\end{align*}
$$

Sub for $Q_{\text {enc }}$ in eqn (3)

$$
\begin{gather*}
E 4 \square r^{2}=Q_{\text {enc }}=k \square R^{4} \\
\varepsilon O \quad \varepsilon O \\
E=K r^{4} \quad \bar{r} \tag{10}\\
4 \varepsilon \circ r^{2}
\end{gather*}
$$

Eqn (10) gives the field outside the non uniformly charged sphere.

II) Field on the surface of the sphere

On the surface $r=R$

$$
\begin{align*}
& E=k R^{4} \quad \bar{r} \tag{11}\\
& 4 \varepsilon \circ R^{2} \\
& E=k R^{2} \quad \bar{r} \\
& \text { 4\&о }
\end{align*}
$$

On the surface,
$\mathrm{E} \infty \mathrm{R}^{2}$

III) Field inside the sphere ($\mathbf{r}<\mathrm{R}$)

Let the field is to be determined at a distance r from the centre of the sphere, so Gaussian surface is to be constructed inside the sphere with radius ' r '.

Applying gauss's law.

$$
\begin{array}{r}
\int_{\text {G.S }} \text { E.da }=\mathrm{Q}_{\mathrm{enc}} \tag{12}\\
\varepsilon \mathrm{\varepsilon O} \\
\int_{\text {G.S }} \text { E.da }=\int_{\mathrm{v}} \rho \mathrm{\rho dr} \\
\varepsilon \mathrm{O}
\end{array}
$$

For charged sphere. E is radially outwards and parallel to d

$$
\begin{aligned}
E \int_{G . S} d a & =1 \int_{v} k r^{\prime} r^{\prime 2} \sin \theta d \theta d r^{\prime} d \phi \\
& =1 \quad \\
& =1 \int_{V} k r^{\prime 3} \sin \theta d \theta d r^{\prime} d \phi
\end{aligned}
$$

$$
\mathrm{E} 4 \square \mathrm{r}^{2}=\frac{1}{\varepsilon O} \int_{0}^{2^{2}} d \phi r^{r} d r^{\prime} \int_{0} \sin \theta d \theta
$$

$$
E 4 \square r^{2}=1 k\left[r^{\prime}\right]_{0}^{r} 4 \square
$$

$$
\varepsilon \bar{O} \varepsilon \bar{O}
$$

$$
E r^{2}=1 k r^{4}
$$

$$
\varepsilon O \varepsilon O
$$

$$
\begin{equation*}
E=k r^{2} \tag{14}
\end{equation*}
$$

$$
4 \varepsilon O
$$

Eqn (14) gives the field inside the non uniformly charged sphere. $E \infty r^{2}$
IV) Graphical representation: E of Non Uniformly charged sphere.

FIEID DUE TO UNIFORMIY CHARGED CYIINDER

I) Outside the cylinder ($r>R$)

Let the field is to be determined at a distance r from the axis of uniformly charged cylinder. Then guassian surface is to be constructed at a distance r outside the charged cylinder. which will be co - axial with the charged cylinder. Applying Gauss's law to the cylindrical guassian surface.

$$
\begin{align*}
\int_{\mathrm{G} . \mathrm{S}} \mathrm{E} . \mathrm{da}= & \mathrm{Q}_{\mathrm{enc}} \tag{1}\\
& \varepsilon O \\
\int_{\text {G.S }} \mathrm{E} . \mathrm{da} & =2 \int_{\text {end side (E.S) }} \mathrm{E} . \mathrm{da}+\int_{\text {curved side (C.S) }} \mathrm{E} . \mathrm{da}
\end{align*}
$$

For a long charged cylinder E is alwayz radially outward, so it can be taken that E and da are in same direction for the curve side and E and da at right angles for the end sides
eqn (2) is changes to,

$$
\begin{aligned}
\int_{G, S} E . d a= & 2 \int_{E . S} E d a \cos 90+\int_{\text {C.S }} E d a \cos 0 \\
\int_{G . S} E . d a & =\int_{\text {C.S }} E d a \\
& =E \int_{\text {C.S }} d a
\end{aligned}
$$

$\int_{\text {G. s }} E . d a=E *$ (Total area of curved surface) $\int_{\mathrm{G} . \mathrm{s}} \mathrm{E} . \mathrm{da}=\mathrm{E} 2 \square \mathrm{rL}$
Where L is the length of the gaussian cylinder
Applying eqn (4) in (1)

$$
\mathrm{E} 2 \square \mathrm{rL}=\mathrm{Q}_{\mathrm{enc}}
$$

$Q_{\text {enc }}=$ charge enclosed by the gaussian cylinder
$=$ volume of charged cylinder enclosed by gaussian cylinder * ρ
$=\square R^{2} L \rho$

E2 $\square \mathrm{L}=\square \mathrm{R}^{2} \mathrm{~L} \rho$
$\varepsilon 0$

$$
E=\frac{R^{2} \rho}{2 \varepsilon o r} r
$$

Outside the cylinder,
$E \frac{\infty 1}{r}$

II) Field on the surface

On the surface $r=R$

$$
\begin{aligned}
& \begin{array}{c}
E=R^{2} \rho \\
2 \varepsilon o R
\end{array} R \\
& \frac{E=R \rho}{2 \varepsilon \circ} R
\end{aligned}
$$

III) Field inside the cylinder ($\mathbf{r}<\mathbf{R}$)

Let field is to be determined at a distance r inside the cylinder, then gaussian surface is to be constructed inside the charged cylinder which is essentially co-axial to the charged cylinder
Applying the gauss's law guassian cylinder,

$$
\int_{\text {G.S }} E . d a=Q_{e n c}
$$

ع૦

$$
\rho \int_{G . S} E . d a=2 \int_{E . S} E . d a+\int_{C . S} E . d a
$$

At the end E and da are perpendicular to each other; so flux through the ends zero

$$
\begin{aligned}
\int_{\text {G.S }} \mathrm{E} . \mathrm{da} & =\mathrm{E} \int_{\mathrm{C} . \mathrm{S}} \mathrm{da} \\
& =\mathrm{E} \int_{\mathrm{C} . \mathrm{S}} \mathrm{da}=\mathrm{E} 2 \square \mathrm{rL}
\end{aligned}
$$

Applying eqn (10) in eqn (7)
E2 $\square \mathrm{L}=$ volume of charged cylinder inside G.S * ρ εO

$$
E 2 \square r L=\frac{\square r^{2} L \rho}{\varepsilon o}
$$

$$
E=\frac{r \rho}{2 \varepsilon o} \bar{r}
$$

Inside the cylinder
$E \infty r$

IV) Graphical representation of field due to charged cylinder

