
Java DataBase Connectivity (JDBC)

By,

Hitha Paulson

Assistant Professor, Dept. of Computer Science

LF College, Guruvayoor

JDBC

 JDBC is an interface between Java and Database

 JDBC receives queries from Java Application program and

communicate with Database

 All the communications are in the form of SQL commands

 JDBC is reponsible for

 Open a Connection

 Communicate with database

 Execute SQL statements

 Retrive query results

Open DataBase Connectivity

 Standard designed by Microsoft to interact with

databases

 ODBC is packed with many features and extending

support for all type of databases

 ODBC provides multiple mechanism for performing

single task and number of data handling capabilities

JDBC vs ODBC

 JDBC and ODBC are X/OPEN call level interface

for SQL

 JDBC is not a derivative of ODBC

 JDBC is compact and simple

 JDBC is meant for simple access to the database and

difficult task at least make possible

JDBC Drivers

 JDBC driver is responsible for making connection with different

databases

 It is also translating the queries received from Application and

submit into database

 A reverse translation is also required to perform by the Driver

 JDBC Driver speaks JAVA to Application and native language

to database

 JDBC Drivers are exists for almost all databases

 Appropriate driver will load for requied database

JDBC – ODBC Bridge

 It is a JDBC driver designed to let Java application

communicate with database via an underlying ODBC driver

 It is called Type I JDBC connector

 It can be used with multiple databases and is vendor

independent

 This type JDBC driver speaks only to ODBC driver, hence

works for Databases supported by ODBC

 One more added layer is used and hence more complex and

slower than JDBC drivers

Native-API-Partly-Java Driver

 It make use of local native libraries to communicate

with database

 Vendor specific Call Level Interface(CLI) installed

locally are used by this type driver

 CLI libraries are actually communicate with

database

 Application level requests are translated into

equallent native method call of CLI

 Faster than Type I driver

JDBC-Net-All-Java Driver

 Type III Driver, uses the CLI libraries locates in a remote server

 Type III driver has two major components

 An All-Java portion that can download to the client

 Server portion containing both Java and Native methods

 All communication between Application and Database is 100% Java

to Java

 This type of driver is also depending on CLI calls, which is installed

on Server

 Type III can be used in Internet, since no direct access to CLI libraries

 Type III Network protocol is not standardized

Native-Protocol-All-Java Driver

 100% java specific drivers

 No intermediate translation is required

 But all vendor specific driver cannot released by

Java

 Java Applets are now free from Acces restrictions

JDBC Implementation

 Seven Steps

– Import java.sql package

– Load and register the driver

– Establish a connection to the database server

– Create a statement

– Execute the statement

– Retrive the result

– Close the statement and connection

Load and Register Driver

Class.forName("Driver ClassName");

Eg:1 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”)

2 Class.forName("com.mysql.jdbc.Driver");

Note: Calling the Class.forName automatically creates an instance of a driver

and registers it with the DriverManager, so you don't need to create an

instance of the class

Establish Connection

Connection conn=DriverManager.getConnection("URL");

The drivers loaded recognizes, the JDBC URL in DriverManager.getConnection, that

driver establishes a connection to the DBMS specified in the JDBC URL.

The DriverManager class,manages all of the details of establishing the connection

The connection returned by the method DriverManager.getConnection is an open

connection you can use to create JDBC statements that pass your SQL statements

to the DBMS.

DriverManager.getConnection(“jdbc:mysql://172.16.5.27/campusdb”,”mca”,”mca”);

Managing Statement

createStatement() of Connection class is used to make

object of Statements.

Eg: Statement stat=con.createStatement();

Statement object can call executeQuery(“SQL

Command”) to execute a select statement.

Use executeUpdate(“SQL Command”) to execute any

data updation commands

Resultset

An executeQuery() method retrives the selected

records as an object of ResultSet class

It stores data in tabular format. Rowid and ColID can

be used to identify each data.

Rows are records of table and columns are fields of

table

A cursor is attached to fetch data from any row

Metadata

 Information that describes the structure and

properties of your data

 Two types of Metadata

 Resultset Metadata: Information about the data contained

in a Resultset, such as column name, number of columns

and column data types

 Database Metadata: Information about database, such as

supported functions, username, current transaction

isolation level

