
Classes

Objects

Methods

Interfaces

By,

Hitha Paulson

Assistant Professor, Dept. of Computer Science

LF College, Guruvayoor

OOP Concept

• Everything in OOP is considered as Classes and Object

• Prime importance is given to Data

• Identify data in the system

• Group data based on the common property

• Develop a template for the data group

• Class is a template for data

– Class is a data type

– Class does not contain any data

– Class contain data variables and methods to operate data

• Object is an instance of Class

– Objects are created from Class

General form of CLASS

class classname

{

type instance-var1;

type instance-var1;

// ……

type instance-varN;

type methodname1(parameter-list)

{

//body of method

}

type methodname2(parameter-list)

{

//body of method

}

// ……..

type methodnameN(parameter-list)

{

//body of method

}

}

About CLASS definition

• Declared by using class keyword

• Variables defined within class are called instance variable

• Code is written within methods

• Instance variables and methods together called class

members

• No method definition can put outside class

• With each member, it is required to use access-specifier

• The default access specifier is FRIENDLY

Sample Class

class rectangle

{

int length, breadth;

void getData(int x, int y)

{

length = x;

breadth = y;

}

int rectArea()

{

int area = length * breadth;

}

}

• Objects are created in two steps

– Declare a class type variable

– Allocate memory and bind with class variable

– Memory is allocated dynamically by using new operator

• Eg: rectangle r1; //declaring class variable

r1 = new rectangle(); //allocating memory and binding

rectangle r2= new rectangle();

• rectangle() : call to constructor

• Class members are accessed by using dot (.) operator

• Eg: r1.getData(10,20); r1.length=45;

Creating Objects

• Member functions used to initialize class data members

• Constructors has the same name of Class

• A class can have more than one constructor

• Matching constructor function will invoke each time when an

instance is created

• Constructors will not have any return value, even void

• Implicit return type of constructor is class type itself

Constructors

Parameter Constructors

• Constructors can take parameters

• Parameters are passed at the time of object creation

• Once parameterized constructors are there, all object

creation is required to use proper number of parameters

• Default constructor is required to use, if you want to

initialize object without parameter

this Keyword

 It is keyword that can use inside a class method

• Used to refer to the object that invoked the method

Hiding instance variable

 When we use formal varibles or local variables having the

same name of INSATNCE variables, then instance varibles

will be hidden

 this keyword can use to override instance variable hiding

• this.INSTANCE variable-name refer to INSTANCE variable

Garbage Collection

 Garbage collection is the process of recollecting the memory

that is no longer used

• This process is automatically and dynamically done by JAVA

• When no reference to an object exist, object is assumed to

be no longer needed, and the memory occupied by the

object will automatically reallocated

• helps to ensure program integrity

• Disadvantage: Takes lot of processing to find out

unreferenced objects

Garbage Collection Scenario

finalize() method

• It an alternate to the destructor function

• Used to deallocate non.java resources hold by Java program

• Non-java resources Eg: File handler, Window character font

• This method will call automatically just before the garbage

collection

• It is declared as protected to prevent access to finalize() by

code defined outside the class

• finalize() will not invoke when an object goes out of scope

Method Overloading

• A class can have more than one method having the same

name, they are Overloaded methods

• Overloaded methods are different in terms of number of OR

type of parameters

• Method overloading is one of the ways that Java implements

Polymorphism

• Difference in return type is not sufficient for method

overloading

• Constructors can also overload

Objects as Parameters

• Methods can take Objects as its parameter

• Constructors can also take Object as argument

• Object type argument are used to make available the data in

one object into another object

• Objects can return from method

• Call-by-Value :- Copies the value of actual argument into

formal argument. Changes in formal argument will not reflect

in actual argument

• Call-by-Reference :- Reference to the parameter is passed as

argument. Changes in formal argument in reflect in actual

argument

• Object type parameters are passed as Call-by-reference

Parameter passing

Recursion
• A method that calls itself is said to be recursion

• Local variables and formal aruguments of recursive function

will create every time when function call is made

• When a function call returns, corresponding local variables

and parameters will destroy

• One of the possible exception that can raise is STACK

OVERFLOW

• It is mandatory to use some condition to terminate recursive

function call

STATIC members

• Members of class declared by using the keyword static are

known as static members

• Data members and methods can be static

• Static Data member

• It is global variable to the class

• All objects of class share same Static member

• No copy of static variable is created for each object

• Static member are accessed with class name but not

with objects of class

• It is created before any object of that class is

created

STATIC members contd..

• Static Method

• They can access only static data members

• They can call only other static methods

• Static methods are accessed with class name

(classname.staticmethod)

• Eg: main() method:- This function will invoke without

creating object of class

• They cannot refer to ”this” or “super” because

static methods are not object specific

FINAL variables

• FINAL variables are constants in JAVA

• FINAL variables are declared by using final keyword

• All final variables are required to initialize at the time of

declaration

• Eg: final int count = 100;

• Value of final variable cannot changed during execution

Nested and Inner Classes

• A class defined inside another class is known as Nested class

• If class B is defined inside class A, then A is outer class and B is

Nested class

• Nested class is available within the scope of its enclosing class

• Nested class can access the members including private

members of the class in which it is enclosed

• Enclosing class cannot directly access the members of nested

class

• Nested class can define within the scope of a block bracket in

another class

Nested and Inner Classes contd..

• Nested class can be STATIC or NON-STATIC

– Nested class can be either static or non-static

– Non static Nested class is called Inner Class

– Inner class can access variables and methods of outer

class without using objects

– Instance of inner class can create only within the scope

of outer class

– Eg: outerclass.innerclass

– Anonymous inner classes are inner classes that don't have

name

Inheritance

Inheritance is the process of deriving the properties of

one class into another class

A class that is derived from another class is called a

subclass (also a derived class, extended class, or child

class).

The class from which the subclass is derived is called a

superclass (also a base class or a parent class).

Inheritance helps to add more properties to existing class

and hence reuse existing classes

When inheritance is performed, all the inheritable

members of super class will be available in derived class

There are different forms of Inheritance. Eg: Single,

Hierarchical, Multilevel

Inheritance in Java

 Inheritance is done by using extends keyword

 Java does not support Multiple inheritance(a class

extended from more than one classes)

Private members of a class cannot inherite

By default all the non-private members including

constructors will be available in derived class

General form

class subclass-name extends superclass-name

{

//body of class

}

Objects of Superclass and Subclass

 By using the objects of Subclass we can access
all members of Superclass and Subclass

 By using the objects of Superclass we can access
only the members of Superclass

 We can assign an object of subclass into object of
superclass. Here also object of superclass can
access members of Superclass only.

super Keyword

 This keyword is used to refer the immediate
superclass from a subclass

 super has two general forms
 Used to call superclass constructor
 Used to access a member of the superclass

that has been hidden by a member of a
subclass

 Cannot use it within static method

Form 1

 Subclass can call a constructor method defined by
its superclass

 General condition
 It should be the first statement in the subclass

constructor
 If superclass contains constructor then

subclass should contain a constructor
 Usage: super(parameter-list);
 Subclass constructor should contain enough

arguments to call superclass constructor

Form 2

 Used to access a member of the superclass that
has been hidden by a member of a subclass
 General form super.member; where member is

a data member in superclass
 super can use to refer only the immediate

class member
 super can also used to refer methods of

superclass

Constructor in Multilevel
Hierarchy

 Constructors in a multilevel hierarchy is
invoked in the order of their definition.

 Constructor of superclass will invoke before
subclass constructor

 Once a hierachy is defined with top class
contains constructor, then all the classes in
this hierarchy must contain constructors

Method Overriding

 The process of defining a method in a subclass
having the same name and type signature of a
method in superclass

 When an overridden method is called from a
subclass, it will always refer to the subclass
version of the method

 In order to call superclass version of overridden
method, super keyword can preceed with method
name

 Method overriding occurs only when the name
and type signature of the two methods are
identical, otherwise they are overloaded methods

Dynamic Method Dispatch

 It is the process of implementing run-time
polymorphism

 Method overriding helps to implement run-time
polymorphism

 Dynamic method dispatch is the mechanism by which
a call to an overridden method is resolved at run time

 When an overridden method is called through a
superclass reference, Java determines which version
of that method to execute based upon the type of
object being referenced at the time of call occurs

 The type of object being referenced determines which
version of overridden method will be executed

Abstract Class

 A class declared by using abstract keyword is called
Abstract class

 An abstract class contains Abstract Method and this class
cannot instantiate using new operator

 An abstract method declared in a base class which never
contains its definition

 Abstract methods must override in the derived class. Either
redefine as abstract or else give its definition

 abstract keyword is used to declare abstract methods

 Abstract class cannot contain abstract constructor and it
cannot be abstract static method

 Abstract class can use to declare Object References

final Class and final Method

 A class declared by using final keyword is called final class

 A final class cannot be used to inheritance and all of its
methods will be final methods

 A final class cannot be both abstract and final

 A method declared by using final keyword is called final
method

 A final method cannot be override by subsequent classes

 Final methods ensure early binding

