Dr Mariamma Antony
 Assistant Professor in Statistics

2020-2021

Probability Distributions

Module 1

- STANDARD DISTRIBUTIONS

In this module some important discrete distributions and continuous distributions are discussed

Discrete distributions

- Discrete distributions discussed in this module are the following:
1.Bernoulli

2. Binomial
3. Poisson
4. Geometric
5. Negative Binomial
6. Uniform

Bernoulli Distribution

Definition

A random variable X which takes two values 0 and 1 with probabilities q and p respectively ie, $P(X=1)=p, P(X=0)=q, q=1-p$ is called a Bernoulli variate and is said to have a Bernoulli distribution. In another way we can say:
A random variable X is said to follow Bernoulli distribution if its $p d f$ is given by

$$
\begin{aligned}
f(x) & =p^{x}(1-p)^{1-x}, x=0,1 \\
& =0 \text { elsewhere }
\end{aligned}
$$

Examples

1. An unbiased die is thrown once. Occurrence of 6 is considered as a success. Let X denote the number of successes. Here X takes the values 0 with probability $\frac{5}{6}$ and takes the value 1 with probability $\frac{1}{6}$.
2. An unbiased die is thrown once. Occurrence of 5 or 6 is considered as a success. Let X denote the number of successes. Here X takes the values 0 with probability $\frac{2}{3}$ and takes the value 1 with probability $\frac{1}{3}$.
3. An unbiased coin when tossed shows head or tail. If the outcome is head call it as success . Then $X=0$ or 1 according as outcome is tail or head . Here $P(X=0)=P(X=1)=\frac{1}{2}$
4.An unbiased die is thrown once. Occurrence of an even number is considered as a success. Let X denote the number of successes. Here X takes the values 0 and 1 with probability $\frac{1}{2}$

Moments of Bernoulli distribution

The $r^{t h}$ moment about origin is

$$
\mu_{r}^{\prime}=\mathrm{E}\left(X^{r}\right)=0 . q+1 \cdot p=p, \quad r=1,2, \ldots
$$

- Mean $=E(X)=p$
- Variance $=\mathrm{E}\left(X^{2}\right)-\{\mathrm{E}(\mathrm{X})\}^{2}$
$=p-p^{2}=p(1-p)$
$=p q$.

Moment Generating Function

- $\operatorname{Mgf}=\mathrm{E}\left(e^{t X}\right)$

$$
\begin{aligned}
& =e^{0} \cdot \mathrm{q}+e^{t} \cdot \mathrm{p} \\
& =\mathrm{q}+\mathrm{p} e^{t}
\end{aligned}
$$

Problem

- $\mathrm{X}=0$ or 1 according as an unbiased coin when tossed shows head or tail. Find the mgf.
Answer:
Pdf is given by

$$
\begin{array}{lll}
X & 0 & 1 \\
P_{x} & 1 / 2 & 1 / 2
\end{array}
$$

mgf is $\mathrm{q}+\mathrm{p} e^{t}=\frac{1}{2}+\frac{1}{2} e^{t}$.

Assignment

- $\mathrm{X}=0$ or 1 according as an unbiased coin when tossed shows head or tail. Find the first four central moments.

