

 Maximum CPU utilization
obtained with
multiprogramming

 CPU–I/O Burst Cycle –
Process execution
consists of a cycle of CPU consists of a cycle of CPU
execution and I/O wait

 CPU burst followed by I/O
burst

 CPU burst distribution is
of main concern

 Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways not always FIFO

 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state (any interrupt occurs)2. Switches from running to ready state (any interrupt occurs)
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive
 Consider access to shared data
 Consider preemption while in kernel mode
 Consider interrupts occurring during crucial OS activities

 Dispatcher module gives control of the CPU to the

process selected by the short-term scheduler; this

involves:

◦ switching context

◦ switching to user mode◦ switching to user mode

◦ jumping to the proper location in the user program

to restart that program

 Dispatch latency – time it takes for the dispatcher to

stop one process and start another running

 CPU utilization – keep the CPU as busy as possible

 Throughput – Number of processes that complete their

execution per time unit

 Turnaround time – amount of time to execute a particular

process

 Waiting time – amount of time a process has been waiting in

the ready queue

 Response time – amount of time it takes from when a request

was submitted until the first response is produced, not output

(for time-sharing environment)

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time Min waiting time

 Min response time

Process Burst Time
P1 24
P2 3
P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

P P P1 2 3

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

Suppose that the processes arrive in the order:
P2 , P3 , P1

 The Gantt chart for the schedule is:

P1

0 3 6 30

P2 P3

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case

 Convoy effect: small process behind large process, so that processes wait

for the big processes to get out of the CPU.

 This effect results in lower CPU and device utilization that might be

possible if the shorter processes were allowed to first.

It is non preemptive

 Associate with each process the length of its next

CPU burst

◦ Use these lengths to schedule the process with

the shortest time

 SJF is optimal – gives minimum average waiting

time for a given set of processes

◦ The difficulty is knowing the length of the next

CPU request

◦ Could ask the user

ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3

0 3 24

P4 P1

169

P2

 Can only estimate the length – should be similar to the previous
one
◦ Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using
exponential averaging

burst CPU of length actual 1. thnt

 Commonly, α set to ½
 Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1 1 nnn t

 Now we add the concepts of varying arrival times and preemption
to the analysis

ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 54

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 =
6.5 msec

P4

0 1 26

P1 P2

10

P3P1

5 17

 A priority number (integer) is associated with each
process.

 determined internally (memory requirement, cpu
i/o burst, time limit etc..)or Externally (importance,
type etc..)

 The CPU is allocated to the process with the highest
priority (smallest integer highest priority)
◦ Preemptive
◦ Nonpreemptive

 Problem Starvation – low priority processes may

never execute

 Solution Aging – as time progresses increase the

priority of the process

ProcessAarri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

 Each process gets a small unit of CPU time (time

quantum q), usually 10-100 milliseconds. After this

time has elapsed, the process is preempted and added

to the end of the ready queue.

 If there are n processes in the ready queue and the

time quantum is q, then each process gets 1/n of the

CPU time in chunks of at most q time units at once.

No process waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next

process

 Performance

◦ q large FIFO

◦ q small q must be large with respect to context

switch, otherwise overhead is too high

Process Burst Time
P1 24
P2 3
P3 3

 The Gantt chart is:

 Average waiting time = 17/3 =5.66 milliseconds
 Typically, higher average turnaround than SJF, but better

response

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

80% of CPU bursts should b
e shorter than q

 Ready queue is partitioned into separate queues, eg:
◦ foreground (interactive)
◦ background (batch)

 Process permanently in a given queue
 Each queue has its own scheduling algorithm:

◦ foreground – RR
◦ background – FCFS◦ background – FCFS

 Scheduling must be done between the queues:
◦ Fixed priority scheduling; (i.e., serve all from

foreground then from background). Possibility of
starvation.

◦ Time slice – each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e.,
80% to foreground in RR

◦ 20% to background in FCFS

 A process can move between the various queues;
aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by
the following parameters:
◦ number of queues
◦ scheduling algorithms for each queue

method used to determine when to upgrade a ◦ method used to determine when to upgrade a
process

◦ method used to determine when to demote a
process

◦ method used to determine which queue a
process will enter when that process needs
service

 Three queues:
◦ Q0 – RR with time quantum 8

milliseconds
◦ Q1 – RR time quantum 16

milliseconds
◦ Q2 – FCFS

 Scheduling
◦ A new job enters queue Q which is ◦ A new job enters queue Q0 which is

served FCFS
 When it gains CPU, job receives 8

milliseconds
 If it does not finish in 8

milliseconds, job is moved to
queue Q1

◦ At Q1 job is again served FCFS and
receives 16 additional milliseconds
 If it still does not complete, it is

preempted and moved to queue Q2

