Data Structure

TREES

Introduction

A (free) tree T is

- A simple graph such that for every pair of vertices v and w
\square there is a unique path from v to w

Rooted tree

A rooted tree is a tree where one of its vertices is designated the root

Level of a vertex and tree height

Let T be a rooted tree:

- The level l(v) of a vertex \mathbf{v} is the length of the simple path from v to the root of the tree
- The height h of a rooted tree T is the maximum of all level numbers of its vertices:

$$
h=\max _{v \in \mathrm{~V}(\mathrm{~T})}\{I(v)\}
$$

- Example:

- the tree on the right has height 3

Organizational charts

Huffman codes

- On the left tree the word rate is encoded 001000011100
- On the right tree, the same word rate is encoded 1100000110

Terminology

- Parent
- Ancestor
- Child
- Descendant
\square Siblings
- Terminal vertices
- Internal vertices

- Subtrees

Internal and external vertices

- An internal vertex is a vertex that has at least one child
- A terminal vertex is a vertex that has no children
- The tree in the example has 4 internal vertices and 4 terminal vertices

Subtrees

A subtree of a tree T is a tree T ' such that

- $\mathrm{V}\left(\mathrm{T}^{\prime}\right) \subseteq \mathrm{V}(\mathrm{T})$ and
$\square E\left(T^{\prime}\right) \subseteq E(T)$

Characterization of trees

Theorem

If T is a graph with n vertices, the following are equivalent:
a) T is a tree
b) T is connected and acyclic

- ("acyclic" = having no cycles)
c) T is connected and has $n-1$ edges
d) T is acyclic and has $n-1$ edges

Spanning trees

Given a graph G, a tree T is a spanning tree of G if:
$\square \mathrm{T}$ is a subgraph of G and

- T contains all the vertices of G

Spanning tree search

- Breadth-first search method

- Depth-first search method (backtracking)

Minimal spanning trees

Given a weighted graph G, a minimum spanning tree is

- a spanning tree of G
\square that has minimum "weight"

1. Prim's algorithm

- Step 0: Pick any vertex as a starting vertex (call it a). $\mathrm{T}=\{\mathrm{a}\}$.
- Step 1: Find the edge with smallest weight incident to a. Add it to T Also include in T the next vertex and call it b.
- Step 2: Find the edge of smallest weight incident to either a or b. Include in T that edge and the next incident vertex. Call that vertex c.
- Step 3: Repeat Step 2 , choosing the edge of smallest weight that does not form a cycle until all vertices are in T . The resulting subgraph T is a minimum spanning tree.

2. Kruskal's algorithm

- Step 1: Find the edge in the graph with smallest weight (if there is more than one, pick one at random). Mark it with any given color, say red.
- Step 2: Find the next edge in the graph with smallest weight that doesn't close a cycle. Color that edge and the next incident vertex.
- Step 3: Repeat Step 2 until you reach out to every vertex of the graph. The chosen edges form the desired minimum spanning tree.

Binary trees

A binary tree is a tree where each vertex has zero, one or two children

Full binary tree

A full binary tree is a binary tree in which each vertex has two or no children.

Full binary tree

Theorem: If T is a full binary tree with k internal vertices, then

- T has k+1 terminal vertices and
\square the total number of vertices is $2 \mathrm{k}+1$.
- Example: there are $\mathrm{k}=4$ internal vertices (a, b, c and f) and 5 terminal vertices (d, e, g, h and i) for a total of 9 vertices.

Height and terminal vertices

- Theorem: If a binary tree of height h has t terminal vertices, then $\lg t \leq h$, where Ig is logarithm base 2.
Equivalently, $\mathrm{t} \leq 2^{h}$.
- Example, $h=4$ and $t=7$. Then: $t=7<16=2^{4}=2^{h}$

A case of equality

- If all t terminal vertices of a full binary tree T have the same level $h=$ height of T, then

$$
t=2^{h} .
$$

\square Example:

- The height is $h=3$,
\square and the number of terminal vertices is $t=8$

- $t=8=2^{3}=2^{h}$

Alphabetical order

Alphabetical or lexicographic order is the order of the dictionary:
a) start with an ordered set of symbols $X=$ $\{a, b, c, \ldots\}$. X can be infinite or finite.
b) Let $\alpha=x_{1} x_{2} \ldots x_{m}$ and $\beta=y_{1} y_{2} \ldots y_{n}$ be strings over X. Then define $\alpha<\beta$ if

- $\mathrm{x}_{1}<\mathrm{y}_{1}$
- or if $x_{j}=y_{j}$ for all $j, 1 \leq j \leq k$, for some k such that $1 \leq k \leq \min \{m, n\}$ and $x_{j+1}<y_{j+1}$
- or if $m \leq n$ and $x_{j}=y_{j}$ for all $j, 1 \leq j \leq m$

Example of alphabetical order

\square Let $X=$ set of letters of the alphabet ordered according to precedence, i.e.

$$
a<b<c<\ldots<x<y<z
$$

\square Let $\alpha=$ arboreal and $\beta=$ arbiter.
\square In this case,

- $x_{1}=y_{1}=a$,
- $x_{2}=y_{2}=r$
- $x_{3}=y_{3}=b$.
\square So, we go the fourth letter: $x_{4}=0$ and $y_{4}=i$.
\square Since $\mathrm{i}<0$ we have that $\beta<\alpha$.

Binary search trees

- Data are associated to each vertex
- Order data alphabetically, so that for each vertex v, data to the left of v are less than data in v
\square and data to the right of v are greater than data in v
- Example:
"Computers are an important technological tool"

Tree Traversals

- 1: Pre-order traversal

- 2: In-order traversal

More on tree traversals

- 3: Post-order traversal

- 4: Reverse post-order traversal

Arithmetic expressions

- Standard: infix form

$$
(\mathrm{A}+\mathrm{B}) * \mathrm{C}-\mathrm{D} / \mathrm{E}
$$

\square Fully parenthesized form (inorder \& parenthesis):

$$
(((\mathrm{A}+\mathrm{B}) * \mathrm{C})-(\mathrm{D} / \mathrm{E}))
$$

- Postfix form (reverse Polish notation):

$$
A B+C * D E /-
$$

- Prefix form (Polish notation):

$$
-*+A B C / D E
$$

Decision trees

A decision tree is a binary tree containing an algorithm to decide which course of action to take.

Isomorphism of trees

Given two trees T_{1} and T_{2}
$\square T_{1}$ is isomorphic to T_{2}
\square if we can find a one-to-one and onto function $\mathrm{f}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
\square that preserves the adjacency relation

- i.e. if $v, w \in V\left(T_{1}\right)$ and $e=(v, w)$ is an edge in T_{1}, then $e^{\prime}=(f(v), f(w))$ is an edge in T_{2}.

Isomorphism of rooted trees

Let T_{1} and T_{2} be rooted trees with roots r_{1} and r_{2}, respectively. T_{1} and T_{2} are isomorphic as rooted trees if
\square there is a one-to-one function $\mathrm{f}: \mathrm{V}\left(\mathrm{T}_{1}\right) \rightarrow \mathrm{V}\left(\mathrm{T}_{2}\right)$ such that vertices v and w are adjacent in T_{1} if and only if $f(v)$ and $f(w)$ are adjacent in T_{2}

- $f\left(r_{1}\right)=r_{2}$

Example:
$\square T_{1}$ and T_{2} are isomorphic as rooted trees

Isomorphism of binary trees

Let T_{1} and T_{2} be binary trees with roots r_{1} and r_{2}, respectively. T_{1} and T_{2} are isomorphic as binary trees if
a) T_{1} and T_{2} are isomorphic as rooted trees through an isomorphism f, and
b) v is a left (right) child in T_{1} if and only if $f(v)$ is a left (right) child in T_{2}

- Note: This condition is more restrictive that isomorphism only as rooted trees. Left children must be mapped onto left children and right children must be mapped onto right children.

Binary tree isomorphism

Example: the following two trees are
\square isomorphic as rooted trees, but
\square not isomorphic as binary trees

$\begin{array}{ll}T_{1} & T_{2}\end{array}$

Summary of tree isomorphism

There are 3 kinds of tree isomorphism

- Isomorphism of trees
- Isomorphism of rooted trees
\square (root goes to root)
- Isomorphism of binary trees
- (left children go to left children, right children go to right children)

Two binary trees isomorphic as rooted trees, not as binary trees

Non-isomorphism of trees

- Many times it may be easier to determine when two trees are not isomorphic rather than to show their isomorphism.
\square A tree isomorphism must respect certain properties, such as
- the number of vertices
- the number of edges
- the degrees of corresponding vertices
- roots must go to roots
- position of children, etc.

Non-isomorphism of rooted trees

Theorem: There are four non-isomorphic rooted trees with four vertices.

- The root is the top vertex in each tree.
- The degrees of the vertices appear in parenthesis

Non-isomorphic binary trees

Theorem:

- There are $C(2 n, n) /(n+1)$ non-isomorphic binary trees with n vertices, $n \geq 0$, where
$\square C(2 n, n) /(n+1)$ are the Catalan numbers C_{n}

5 nonisomorphic binary trees
with 3 vertices

Catalan numbers (1)

- Eugene Charles Catalan
\square Belgian mathematician, 1814-1894
\square Catalan numbers can be computed using this formula:

$$
C_{n}=C(2 n, n) /(n+1) \text { for } n \geq 0
$$

- The first few Catalan numbers are:

n	$=0$	1	2	3	4	5	6	7	8	9
$\mathrm{C}_{\mathrm{n}}=1$	1	2	5	14	42	132	429	1430	4862	16796

Applications of Catalan numbers

\square The number of ways in which a polygon with $\mathrm{n}+2$ sides can be cut into n triangles
\square The number of ways in which parentheses can be placed in a sequence of numbers, to be multiplied two at a time
\square The number of rooted trivalent trees with $n+1$ vertices
\square The number of paths of length $2 n$ through an n by n grid that do not rise above the main diagonal
\square The number of nonisomorphic binary trees with n vertices

Isomorphism of binary trees

There is an algorithm to test whether two binary trees are isomorphic or not.

- If the number of vertices in the two trees is n,
- and if the number of comparisons needed is a_{n}, it can be shown that $a_{n} \leq 3 n+2$.
Theorem: The worst case of this algorithm is $\Theta(n)$.

Game trees

Trees can be used to analyze all possible move sequences in a game:

- Vertices are positions:
- a square represents one player and a circle represents another player
\square An edge represents a move
A path represents a sequence of moves

