
Data Structure

TREES

Introduction

A (free) tree T is

� A simple graph

such that for such that for

every pair of

vertices v and w

� there is a unique

path from v to w

Rooted tree

A rooted tree is a tree

where one of its vertices is where one of its vertices is

designated the root

Level of a vertex and tree height

Let T be a rooted tree:

� The level l(v) of a vertex v is
the length of the simple path
from v to the root of the tree

� The height h of a rooted tree T � The height h of a rooted tree T
is the maximum of all level
numbers of its vertices:

h = max { l(v) }
v ∈ V(T)

� Example:
� the tree on the right has height 3

Organizational charts

Huffman codes

� On the left tree the word rate is encoded

001 000 011 100

� On the right tree, the same word rate is encoded

11 000 001 10

Terminology

� Parent

� Ancestor

� Child

� Descendant� Descendant

� Siblings

� Terminal vertices

� Internal vertices

� Subtrees

Internal and external vertices

� An internal vertex is a

vertex that has at least one

child

A terminal vertex is a � A terminal vertex is a

vertex that has no children

� The tree in the example

has 4 internal vertices and

4 terminal vertices

Subtrees

A subtree of a tree T is a tree T' such that

� V(T') ⊆ V(T) and

� E(T') ⊆ E(T)

Characterization of trees

Theorem

If T is a graph with n vertices, the following are
equivalent:

a) T is a treea) T is a tree

b) T is connected and acyclic
� (“acyclic” = having no cycles)

c) T is connected and has n-1 edges

d) T is acyclic and has n-1 edges

Spanning trees

Given a graph G, a tree T is a

spanning tree of G if:

� T is a subgraph of G� T is a subgraph of G

and

� T contains all the vertices of G

Spanning tree search

� Breadth-first search

method

� Depth-first search

method (backtracking)

Minimal spanning trees

Given a weighted graph G, a

minimum spanning tree is

� a spanning tree of G

� that has minimum “weight”

1. Prim’s algorithm

� Step 0: Pick any vertex as a

starting vertex (call it a). T = {a}.

� Step 1: Find the edge with

smallest weight incident to a.

Add it to T Also include in T the

� Step 3: Repeat Step

2, choosing the edge

of smallest weight

that does not form a

cycle until all vertices Add it to T Also include in T the

next vertex and call it b.

� Step 2: Find the edge of

smallest weight incident to

either a or b. Include in T that

edge and the next incident

vertex. Call that vertex c.

cycle until all vertices

are in T. The resulting

subgraph T is a

minimum spanning

tree.

2. Kruskal’s algorithm

� Step 1: Find the edge in
the graph with smallest
weight (if there is more
than one, pick one at
random). Mark it with any

� Step 3: Repeat Step 2 until

you reach out to every vertex

of the graph. The chosen

edges form the desired

minimum spanning tree.
random). Mark it with any
given color, say red.

� Step 2: Find the next
edge in the graph with
smallest weight that
doesn't close a cycle.
Color that edge and the
next incident vertex.

minimum spanning tree.

Binary trees

A binary tree is a tree

where each vertex has

zero, one or two children

Full binary tree

A full binary tree is a

binary tree in which binary tree in which

each vertex has two

or no children.

Full binary tree

Theorem : If T is a full binary
tree with k internal vertices,
then

� T has k + 1 terminal vertices � T has k + 1 terminal vertices
and

� the total number of vertices
is 2k + 1.
� Example: there are k = 4 internal

vertices (a, b, c and f) and 5
terminal vertices (d, e, g, h and i) for
a total of 9 vertices.

Height and terminal vertices

� Theorem : If a binary tree
of height h has t terminal
vertices, then lg t < h,
where lg is logarithm where lg is logarithm
base 2.

Equivalently, t < 2h.
� Example, h = 4 and t = 7.

Then: t = 7 < 16 = 24 = 2h

A case of equality

� If all t terminal vertices of a full
binary tree T have the same
level h = height of T, then

t = 2h.t = 2h.

� Example:
� The height is h = 3,

� and the number of terminal
vertices is t = 8

� t = 8 = 23 = 2h

Alphabetical order

Alphabetical or lexicographic order is the order

of the dictionary:

a) start with an ordered set of symbols X =

{a,b,c, …}. X can be infinite or finite.{a,b,c, …}. X can be infinite or finite.

b) Let α = x1x2…xm and β = y1y2…yn be strings

over X. Then define α < β if

� x1 < y1

� or if xj= yj for all j, 1 < j < k, for some k such that

1 < k < min{m,n} and xj+1 < yj+1

� or if m < n and xj = yj for all j, 1 < j < m

Example of alphabetical order

� Let X = set of letters of the alphabet ordered
according to precedence, i.e.

a < b < c <… < x < y < z

� Let α = arboreal and β = arbiter.

In this case, � In this case,
� x1 = y1 = a,

� x2 = y2 = r

� x3 = y3 = b.

� So, we go the fourth letter: x4 = o and y4 = i.

� Since i < o we have that β < α.

Binary search trees

� Data are associated to

each vertex

� Order data alphabetically,

so that for each vertex v,

� Example:
"Computers are an
important
technological tool"

so that for each vertex v,

data to the left of v are

less than data in v

� and data to the right of v

are greater than data in v

Tree Traversals

� 1: Pre-order traversal

� 2: In-order traversal

More on tree traversals

� 3: Post-order traversal

� 4: Reverse post-order

traversal

Arithmetic expressions

� Standard: infix form

(A+B) ∗ C – D/ E

� Fully parenthesized form (in-
order & parenthesis):

(((A + B) ∗ C) – (D / E))(((A + B) ∗ C) – (D / E))

� Postfix form (reverse Polish
notation):

A B + C ∗D E / -

� Prefix form (Polish notation):

- ∗ + A B C / D E

Decision trees

A decision tree is a binary tree containing an

algorithm to decide which course of action to

take.

Isomorphism of trees

Given two trees T1 and T2

� T1 is isomorphic to T2

� if we can find a one-to-one and
onto function f :T → Tonto function f :T1 → T2

� that preserves the adjacency
relation
� i.e. if v, w ∈ V(T1) and e = (v, w) is an

edge in T1, then e’ = (f(v), f(w)) is an
edge in T2.

Isomorphism of rooted trees

Let T1 and T2 be rooted trees with roots r1 and

r2, respectively. T1 and T2 are isomorphic as

rooted trees if

� there is a one-to-one function f: V(T1)→ V(T2) there is a one-to-one function f: V(T1)→ V(T2)

such that vertices v and w are adjacent in T1 if

and only if f(v) and f(w) are adjacent in T2

� f(r1) = r2

Example:

� T1 and T2 are isomorphic

as rooted trees

Isomorphism of binary trees

Let T1 and T2 be binary trees with roots r1 and

r2, respectively. T1 and T2 are isomorphic as

binary trees if

a) T1 and T2 are isomorphic as rooted treesa) T1 and T2 are isomorphic as rooted trees

through an isomorphism f, and

b) v is a left (right) child in T1 if and only if f(v) is

a left (right) child in T2

� Note: This condition is more restrictive that isomorphism only as

rooted trees. Left children must be mapped onto left children

and right children must be mapped onto right children.

Binary tree isomorphism

Example: the following two trees are

� isomorphic as rooted trees, but

� not isomorphic as binary trees

Summary of tree isomorphism
There are 3 kinds of tree isomorphism

� Isomorphism of trees

� Isomorphism of rooted trees

� (root goes to root)

� Isomorphism of binary trees

� (left children go to left children, right children go to

right children)

Non-isomorphism of trees

� Many times it may be easier to determine
when two trees are not isomorphic rather than
to show their isomorphism.

� A tree isomorphism must respect certain
properties, such as properties, such as
� the number of vertices

� the number of edges

� the degrees of corresponding vertices

� roots must go to roots

� position of children, etc.

Non-isomorphism of rooted trees

Theorem: There are four non-isomorphic rooted

trees with four vertices.

� The root is the top vertex in each tree. � The root is the top vertex in each tree.

� The degrees of the vertices appear in parenthesis

Non-isomorphic binary trees

Theorem:

� There are C(2n,n) / (n+1) non-isomorphic

binary trees with n vertices, n > 0, where

� C(2n,n) / (n+1) are the Catalan numbers Cn

Catalan numbers (1)

� Eugene Charles Catalan

� Belgian mathematician, 1814-1894

� Catalan numbers can be computed using this

formula: formula:

Cn = C(2n,n) / (n+1) for n > 0

� The first few Catalan numbers are:

n = 0 1 2 3 4 5 6 7 8 9 10

Cn = 1 1 2 5 14 42 132 429 1430 4862 16796

Applications of Catalan numbers

� The number of ways in which a polygon with n+2 sides

can be cut into n triangles

� The number of ways in which parentheses can be

placed in a sequence of numbers, to be multiplied two

at a timeat a time

� The number of rooted trivalent trees with n+1 vertices

� The number of paths of length 2n through an n by n

grid that do not rise above the main diagonal

� The number of nonisomorphic binary trees with n

vertices

Isomorphism of binary trees

There is an algorithm to test whether two binary

trees are isomorphic or not.

� If the number of vertices in the two trees is n,� If the number of vertices in the two trees is n,

� and if the number of comparisons needed is an,

it can be shown that an < 3n + 2.

Theorem : The worst case of this algorithm is Θ(n).

Game trees

Trees can be used to analyze all possible

move sequences in a game:

� Vertices are positions:

a square represents one player and a circle � a square represents one player and a circle

represents another player

� An edge represents a move

� A path represents a sequence of moves

