
Data Structure

TREES



Introduction

A (free) tree T is

� A simple graph 

such that for such that for 

every pair of 

vertices v and w

� there is a unique 

path from v to w



Rooted tree

A rooted tree is a tree

where one of its vertices is where one of its vertices is 

designated the root



Level of a vertex and tree height

Let T be a rooted tree:

� The level l(v) of a vertex v is 
the length of the simple path 
from v to the root of the tree

� The height h of a rooted tree T � The height h of a rooted tree T 
is the maximum of all level 
numbers of its vertices:

h = max { l(v) }
v ∈ V(T)

� Example:
� the tree on the right has height 3



Organizational charts



Huffman codes

� On the left tree the word rate is encoded

001 000 011 100

� On the right tree, the same word rate is encoded

11 000 001 10



Terminology

� Parent

� Ancestor

� Child

� Descendant� Descendant

� Siblings

� Terminal vertices

� Internal vertices

� Subtrees



Internal and external vertices

� An internal vertex is a 

vertex that has at least one 

child

A terminal vertex is a � A terminal vertex is a 

vertex that has no children

� The tree in the example 

has 4 internal vertices and 

4 terminal vertices



Subtrees

A subtree of a tree T is a tree T' such that

� V(T') ⊆ V(T) and

� E(T') ⊆ E(T)



Characterization of trees

Theorem

If T is a graph with n vertices, the following are 
equivalent:

a) T is a treea) T is a tree

b) T is connected and acyclic
� (“acyclic” = having no cycles)

c) T is connected and has n-1 edges

d) T is acyclic and has n-1 edges



Spanning trees

Given a graph G, a tree T is a 

spanning tree of G if:

� T is a subgraph of G� T is a subgraph of G

and 

� T contains all the vertices of G



Spanning tree search

� Breadth-first search 

method

� Depth-first search 

method (backtracking)



Minimal spanning trees

Given a weighted graph G, a 

minimum spanning tree is 

� a spanning tree of G

� that has minimum “weight” 



1. Prim’s algorithm

� Step 0: Pick any vertex as a 

starting vertex (call it a). T = {a}.

� Step 1: Find the edge with 

smallest weight incident to a.  

Add it to T  Also include in T the 

� Step 3: Repeat Step 

2, choosing the edge 

of smallest weight 

that does not form a 

cycle until all vertices Add it to T  Also include in T the 

next vertex and call it b.

� Step 2: Find the edge of 

smallest weight incident to 

either a or b.  Include in T that 

edge and the next incident 

vertex.  Call that vertex c.

cycle until all vertices 

are in T. The resulting 

subgraph T is a 

minimum spanning 

tree.



2.  Kruskal’s algorithm

� Step 1: Find the edge in 
the graph with smallest 
weight (if there is more 
than one, pick one at 
random). Mark it with any 

� Step 3: Repeat Step 2 until 

you reach out to every vertex 

of the graph. The chosen 

edges form the desired 

minimum spanning tree.
random). Mark it with any 
given color, say red.

� Step 2: Find the next 
edge in the graph with 
smallest weight that 
doesn't close a cycle. 
Color that edge and the 
next incident vertex.

minimum spanning tree.



Binary trees

A binary tree is a tree 

where each vertex has 

zero, one or two children



Full binary tree

A full binary tree is a 

binary tree in which binary tree in which 

each vertex has two 

or no children.



Full binary tree

Theorem : If T is a full binary 
tree with k internal vertices, 
then 

� T has k + 1 terminal vertices � T has k + 1 terminal vertices 
and 

� the total number of vertices 
is 2k + 1.
� Example: there are k = 4 internal 

vertices (a, b, c and f) and 5 
terminal vertices (d, e, g, h and i) for 
a total of 9 vertices. 



Height and terminal vertices

� Theorem : If a binary tree 
of height h has t terminal 
vertices, then lg t < h, 
where lg is logarithm where lg is logarithm 
base 2. 

Equivalently, t < 2h.
� Example, h = 4 and t = 7. 

Then: t = 7 < 16 = 24 = 2h



A case of equality

� If all t terminal vertices of a full 
binary tree T have the same 
level h = height of T, then 

t =  2h.t =  2h.

� Example:
� The height is h = 3, 

� and the number of terminal 
vertices is t = 8

� t = 8 = 23 = 2h



Alphabetical order

Alphabetical or lexicographic order is the order 

of the dictionary:

a) start with an ordered set of symbols X = 

{a,b,c, …}.  X can be infinite or finite.{a,b,c, …}.  X can be infinite or finite.

b) Let α = x1x2…xm and β = y1y2…yn be strings 

over X.  Then define α < β if 

� x1 < y1 

� or if xj= yj for all j, 1 < j < k, for some k such that 

1 < k < min{m,n} and xj+1 < yj+1

� or if m < n and xj = yj for all j, 1 < j < m 



Example of alphabetical order

� Let X = set of letters of the alphabet ordered 
according to precedence, i.e. 

a < b < c <… < x < y < z 

� Let α = arboreal and β = arbiter.

In this case, � In this case, 
� x1 = y1 = a, 

� x2 = y2 = r 

� x3 = y3 = b.   

� So, we go the fourth letter: x4 = o and y4 = i. 

� Since i < o we have that β < α. 



Binary search trees

� Data are associated to 

each vertex

� Order data alphabetically, 

so that for each vertex v, 

� Example: 
"Computers are an 
important 
technological tool"

so that for each vertex v, 

data to the left of v are 

less than data in v

� and data to the right of v 

are greater than data in v



Tree Traversals

� 1: Pre-order traversal

� 2: In-order traversal



More on tree traversals

� 3: Post-order traversal

� 4: Reverse post-order 

traversal



Arithmetic expressions

� Standard: infix form

(A+B) ∗ C – D/ E

� Fully parenthesized form (in-
order & parenthesis): 

(((A + B) ∗ C) – (D / E))(((A + B) ∗ C) – (D / E))

� Postfix form (reverse Polish 
notation): 

A B + C ∗D E / -

� Prefix form (Polish notation): 

- ∗ + A B C / D E



Decision trees

A decision tree is a binary tree containing an 

algorithm to decide which course of action to 

take.



Isomorphism of trees

Given two trees T1 and T2

� T1 is isomorphic to T2

� if we can find a one-to-one and 
onto function f :T → Tonto function f :T1 → T2

� that preserves the adjacency 
relation
� i.e. if v, w ∈ V(T1) and e = (v, w) is an 

edge in T1, then e’ = (f(v), f(w)) is an 
edge in T2.



Isomorphism of rooted trees

Let T1 and T2 be rooted trees with roots r1 and 

r2, respectively. T1 and T2 are isomorphic as 

rooted trees if 

� there is a one-to-one function f: V(T1)→ V(T2) there is a one-to-one function f: V(T1)→ V(T2) 

such that vertices v and w are adjacent in T1 if 

and only if f(v) and f(w) are adjacent in T2

� f(r1) = r2

Example: 

� T1 and T2 are isomorphic 

as rooted trees



Isomorphism of binary trees

Let T1 and T2 be binary trees with roots r1 and 

r2, respectively. T1 and T2 are isomorphic as 

binary trees if

a) T1 and T2 are isomorphic as rooted treesa) T1 and T2 are isomorphic as rooted trees

through an isomorphism f, and

b) v is a left (right) child in T1 if and only if f(v) is 

a left (right) child in T2

� Note: This condition is more restrictive that isomorphism only as 

rooted trees.  Left children must be mapped onto left children 

and right children must be mapped onto right children.



Binary tree isomorphism

Example: the following two trees are

� isomorphic as rooted trees, but 

� not isomorphic as binary trees



Summary of tree isomorphism
There are 3 kinds of tree isomorphism

� Isomorphism of trees

� Isomorphism of rooted trees 

� (root goes to root)

� Isomorphism of binary trees 

� (left children go to left children, right children go to 

right children) 



Non-isomorphism of trees

� Many times it may be easier to determine 
when two trees are not isomorphic rather than 
to show their isomorphism.

� A tree isomorphism must respect certain 
properties, such as properties, such as 
� the number of vertices

� the number of edges

� the degrees of corresponding vertices

� roots must go to roots

� position of children, etc.



Non-isomorphism of rooted trees

Theorem:  There are four non-isomorphic rooted 

trees with four vertices.

� The root is the top vertex in each tree.  � The root is the top vertex in each tree.  

� The degrees of the vertices appear in parenthesis



Non-isomorphic binary trees

Theorem:

� There are C(2n,n) / (n+1) non-isomorphic 

binary trees with n vertices, n > 0, where

� C(2n,n) / (n+1) are the Catalan numbers Cn



Catalan numbers (1)

� Eugene Charles Catalan

� Belgian mathematician, 1814-1894

� Catalan numbers can be computed using this 

formula: formula: 

Cn = C(2n,n) / (n+1)   for n > 0

� The first few Catalan numbers are:

n    = 0  1  2  3   4    5      6       7        8          9         10

Cn = 1  1  2  5 14  42  132   429  1430    4862   16796



Applications of Catalan numbers

� The number of ways in which a polygon with n+2 sides 

can be cut into n triangles   

� The number of ways in which parentheses can be 

placed in a sequence of numbers, to be multiplied two 

at a timeat a time

� The number of rooted trivalent trees with n+1 vertices

� The number of paths of length 2n through an n by n 

grid that do not rise above the main diagonal

� The number of nonisomorphic binary trees with n 

vertices



Isomorphism of binary trees

There is an algorithm to test whether two binary 

trees are isomorphic or not.  

� If the number of vertices in the two trees is n,� If the number of vertices in the two trees is n,

� and if the number of comparisons needed is an, 

it can be shown that an < 3n + 2.

Theorem : The worst case of this algorithm is Θ(n).



Game trees

Trees can be used to analyze all possible 

move sequences in a game:

� Vertices are positions: 

a square represents one player and a circle � a square represents one player and a circle 

represents another player 

� An edge represents a move 

� A path represents a sequence of moves




