Subject: Theory of computation Topic: DFA

LISNA THOMAS

Solution

The FA will have a start state q0 from which only the edge with input 1 will go to the next state.

1
In state q1, if we read 1 , we will be in state $q 1$, but if we read 0 at state $q 1$, we will reach to state $q 2$ which is the final state. In state $q 2$, if we read either 0 or 1 , we will go to $q 2$ state or 0

Design a FA with $\Sigma=\{0,1\}$ accepts the only input 101

Fig: FA
In the given solution, we can see that only input 101 will be accepted. Hence, for input 101 , there is no other path shown for other input.

Solution:

This FA will consider four different stages for input 0 and input 1 . The stages could be:

Here $q 0$ is a start state and tth final state also. Note carefully that a symmetry of 0 's and 1 's is maintained. We can associate meanings to each state as: q 0 : state of even number of 0 's and even number of 1 's, q1: state of odd number of 0 's and even number of 1 's. q 2 : state of odd number of 0 's and odd number of 1 's. q3: state of even number of 0 's and odd number of 1 's.

Design a

Solution:

When three consecutive 1 's occur the DFA will be:

The stages q0, q1, q2 are the final states. The DFA will generate the strings that do not contain consecutive 1 's like $10,110,101, \ldots .$. etc

The DFA can be shown by a transition diagram as:
0
0

\qquad \square

a
 v

Design a Solution
 DFA can be

 1. $=\{0,1\}$ accepts the strings with an even number of 0 's followed by single 1.