
Arrays and Pointers in C

Riya Roy

Department of Computer Application

Arrays in C

Unlike Java, array size in declaration

int array[10];

int b;
Compare: C: int array[10];

Java: int[] array = new int[10];

All elements of same type – homogenous

First element (index 0)

No bounds checking!

Allowed – usually causes no obvious error

array[10] may overwrite b

array[0] = 3;

array[9] = 4;

array[10] = 5;

array[-1] = 6;

First element (index 0)

Last element (index size - 1)

Array Representation

Homogeneous → Each element same size – s bytes

� An array of m data values is a sequence of m×s bytes

� Indexing: 0th value at byte s×0, 1st value at byte s×1, …

m and s are not part of representation

� Unlike in some other languages

s known by compiler – usually irrelevant to programmer� s known by compiler – usually irrelevant to programmer

� m often known by compiler – if not, must be saved by
programmer

a[0]

a[1]

a[2]

0x1000

0x1004

0x1008

int a[3];

Array Representation

char c1;
int a[3];
char c2;
int i;

i0x1014

c1

a[0]

a[1]

a[2]

0x1000

0x1004

0x1008

0x100C

c20x1010

Could be optimized by
making these adjacent,
and reducing padding

(by default, not)

Array aligned by
size of elements

Array Sizes

What is

sizeof(array[3])?

int array[10];

4sizeof(array[3])?

sizeof(array)?

4

40

returns the size of

an object in bytes

Multi-Dimensional Arrays

int matrix[2][3];

matrix[1][0] = 17;

matrix[0][1]

matrix[0][2]

0x1004

0x1008

matrix[1][0]

matrix[1][1]

matrix[1][2]

0x100C

0x1010

0x1014

matrix[0][0]

matrix[0][1]

0x1000

0x1004

Recall: no bounds checking

What happens when you write:

matrix[0][3] = 42;

“Row Major”
Organization

Variable-Length Arrays

int

function(int n)

{

int array[n];

……

New C99 feature: Variable-length arrays

defined within functions

Global arrays must still have fixed (constant) length

Memory Addresses

Storage cells are typically viewed as being
byte-sized

� Usually the smallest addressable unit of memory

• Few machines can directly address bits individually

� Such addresses are sometimes called byte-
addressesaddresses

Memory is often accessed as words

� Usually a word is the largest unit of memory access
by a single machine instruction

• CLEAR’s word size is 8 bytes (= sizeof(long))

� A word-address is simply the byte-address of the
word’s first byte

Pointers

Special case of bounded-size natural numbers

� Maximum memory limited by processor word-size

� 232 bytes = 4GB, 264 bytes = 16 exabytes

A pointer is just another kind of valueA pointer is just another kind of value

� A basic type in C

int *ptr;

The variable “ptr” stores a pointer to an “int”.

Pointer Operations in C

Creation
& variable Returns variable’s memory address

Dereference
* pointer Returns contents stored at address

Indirect assignment
* pointer = val Stores value at address* pointer = val Stores value at address

Of course, still have...

Assignment
pointer = ptr Stores pointer in another variable

Using Pointers

int i1;

int i2;

int *ptr1;

int *ptr2;

i1 = 1; …

ptr2:

…

0x100C

0x1010

0x1014

0x1000

0x1000

i2 = 2;

ptr1 = &i1;

ptr2 = ptr1;

*ptr1 = 3;

i2 = *ptr2;

i1:

i2:

ptr1:

0x1000

0x1004

0x1008

1

2

0x1000

3

3

Using Pointers (cont.)

int int1 = 1036; /* some data to point to */

int int2 = 8;

int *int_ptr1 = &int1; /* get addresses of data */

int *int_ptr2 = &int2;

*int_ptr1 = int_ptr2;

Type check warning: int_ptr2 is not an int

int1 becomes 8

*int_ptr1 = int2;

What happens?

Using Pointers (cont.)

int int1 = 1036; /* some data to point to */

int int2 = 8;

int *int_ptr1 = &int1; /* get addresses of data */

int *int_ptr2 = &int2;

int_ptr1 = *int_ptr2;

Type check warning: *int_ptr2 is not an int *

Changes int_ptr1 – doesn’t change int1

int_ptr1 = int_ptr2;

What happens?

Pointer Arithmetic

pointer + number pointer – number

E.g., pointer + 1 adds 1 something to a pointer

char *p;
char a;
char b;

int *p;
int a;
int b;char b;

p = &a;
p += 1;

int b;

p = &a;
p += 1;In each, p now points to b

(Assuming compiler doesn’t
reorder variables in memory)

Adds 1*sizeof(char) to
the memory address

Adds 1*sizeof(int) to
the memory address

Pointer arithmetic should be used cautiously

A Special Pointer in C

Special constant pointer NULL

� Points to no data

� Dereferencing illegal – causes segmentation fault

� To define, include <stdlib.h> or <stdio.h>� To define, include <stdlib.h> or <stdio.h>

Generic Pointers

void *: a “pointer to anything”

void *p;
int i;
char c;
p = &i;
p = &c;
putchar(*(char *)p);

type cast: tells the compiler to
“change” an object’s type (for type
checking purposes – does not modify
the object in any way)

Dangerous! Sometimes necessary…

Lose all information about what type of thing
is pointed to

� Reduces effectiveness of compiler’s type-checking

� Can’t use pointer arithmetic

putchar(*(char *)p);

Pass-by-Reference

void
set_x_and_y(int *x, int *y)
{

*x = 1001;
*y = 1002;

}
1

2

a 1001

1002
}

void
f(void)
{

int a = 1;
int b = 2;

set_x_and_y(&a, &b);
}

2b

x

y

1002

Arrays and Pointers

Dirty “secret”:

Array name ≈ a pointer to the
initial (0th) array element

a[i] ≡ *(a + i)

Really int *array

int

foo(int array[],

unsigned int size)

{

Must explicitly
pass the size

Passing arrays:

An array is passed to a function
as a pointer

� The array size is lost!

Usually bad style to interchange
arrays and pointers

� Avoid pointer arithmetic!

{

… array[size - 1] …

}

int

main(void)

{

int a[10], b[5];

… foo(a, 10)… foo(b, 5) …

}

Arrays and Pointers

int

foo(int array[],

unsigned int size)

{

…

printf(“%d\n”, sizeof(array));

}

What does this print? 8

... because array is really

a pointer

int

main(void)

{

int a[10], b[5];

… foo(a, 10)… foo(b, 5) …

printf(“%d\n”, sizeof(a));

}

What does this print? 40

a pointer

Arrays and Pointers

int i;

int array[10];

for (i = 0; i < 10; i++)

int *p;

int array[10];

for (p = array; p < &array[10]; p++)for (i = 0; i < 10; i++)

{

array[i] = …;

}

for (p = array; p < &array[10]; p++)

{

*p = …;

}

These two blocks of code are functionally equivalent

Strings

In C, strings are just an array of characters

� Terminated with ‘\0’ character

� Arrays for bounded-length strings

� Pointer for constant strings (or unknown length)

char str1[15] = “Hello, world!\n”;
char *str2 = “Hello, world!\n”;char *str2 = “Hello, world!\n”;

H e l l o , w lo r d !\nlength

H e l l o , w lo r d !\n terminator

Pascal, Java, …

C, …

C terminator: ’\0’

String length

Must calculate length:

int

strlen(char str[])

{

int len = 0;

can pass an
array or pointer

Check for
terminator

array access
to pointer!

Provided by standard C library: #include <string.h>

while (str[len] != ‘\0’)

len++;

return (len);

}

terminatorto pointer!

What is the size
of the array???

Pointer to Pointer (char **argv)

Passing arguments to main:

int

main(int argc, char **argv)

{

...

an array/vector of

char *

size of the argv array/vector

...

}
Recall when passing an
array, a pointer to the
first element is passed

Suppose you run the program this way

UNIX% ./program hello 1 2 3

argc == 5 (five strings on the
command line)

char **argv

argv[3]

argv[4]

0x1018

0x1020
“2”

“3”

These are strings!!
Not integers!

argv[0]

argv[1]

argv[2]

0x1000

0x1008

0x1010

“./program”

“hello”

“1”

