
Subject: Data structures using C
Topic: Circular Queue

LISNA THOMAS
ACADEMIC YEAR:2020-21

Circular Queue & Priority Queue

1

Queue (Linear Queue)

• It is a linear data structure consisting of list of items.

•In queue, data elements are added at one end, called the rear and removed from another

end, called the front of the list.

• Two basic operations are associated with queue:

1. “Insert” operation is used to insert an element into a queue.

2. “Delete” operation is used to delete an element from a queue.

● FIFO list

• Example:

Queue: AAA, BBB, CCC, DDD, EEE

AAA BBB CCC DDD EEE

Rear

1 2 3 4 5 6 7

Front

EEE

DDD

CCC

BBB

AAA

Rear

Front

09/10/08 2

7

1

3

2

4

5

6

3

Figure: Circular Queue having

Rear = 5 and Front = 0

Drawback of Linear Queue

• Once the queue is full, even though few elements from the front are deleted and

some occupied space is relieved, it is not possible to add anymore new elements,

as the rear has already reached the Queue’s rear most position.

Circular Queue

• This queue is not linear but circular.

• Its structure can be like the following figure:

• In circular queue, once the Queue is full the

"First" element of the Queue becomes the

"Rear" most element, if and only if the "Front"

has moved forward. otherwise it will again be

a "Queue overflow" state.

4

Algorithms for Insert and Delete Operations in Circular Queue

For Insert Operation

Insert-Circular-Q(CQueue, Rear, Front, N, Item)

CQueue is a circular queue where to store data.

Rear represents the location in which the data element is to be inserted and

Front represents the location from which the data element is to be removed.

Here N is the maximum size of CQueue and finally, Item is the new item to be

added.

Initailly Rear = 0 and Front = 0.

1. If Front = 0 and Rear = 0 then Set Front := 1 and go to step 4.

2. If Front =1 and Rear = N or Front = Rear + 1

then Print: “Circular Queue Overflow” and Return.

3. If Rear = N then Set Rear := 1 and go to step 5.

4. Set Rear := Rear + 1

5. Set CQueue [Rear] := Item.

6. Return

6

For Delete Operation

Delete-Circular-Q(CQueue, Front, Rear, Item)

Here, CQueue is the place where data are stored. Rear represents the location in

which the data element is to be inserted and Front represents the location from

which the data element is to be removed. Front element is assigned to Item.

Initially, Front = 1.

/*..Delete without Insertion

1. If Front = 0 then

Print: “Circular Queue Underflow” and Return.

2. Set Item := CQueue [Front]

3. If Front = N then Set Front = 1 and Return.

4. If Front = Rear then Set Front = 0 and Rear = 0 and Return.

5. Set Front := Front + 1

6. Return.

Example: Consider the following circular queue with N = 5.

1. Initially, Rear = 0, Front = 0.

3. Insert 50, Rear = 2, Front = 1.

Rear

7

Rear

2. Insert 10, Rear = 1, Front = 1.
Rear

Front

Front

4. Insert 20, Rear = 3, Front = 0.

Front

Rear

5. Insert 70, Rear = 4, Front = 1.

Front

Rear

6. Delete front, Rear = 4, Front = 2.

Front

7. Insert 100, Rear = 5, Front = 2.

9. Insert 140, Rear = 1, Front = 2.

As Front = Rear + 1, so Queue overflow.

Front

Rear

8. Insert 40, Rear = 1, Front = 2.

Rear Front

Rear

10. Delete front, Rear = 1, Front = 3.

Rear

Front

Front

11. Delete front, Rear = 1, Front = 4.

Rear

8

Front

12. Delete front, Rear = 1, Front = 5.
Rear

Front

Insertion
qfull() {

if(front==(rear+1)%size)
return 1;

else
return 0;

}

int insert(int item)
{

if(qfull())
printf("circular q is full");

else
{

if(front==-1)
front=rear=0;

else
rear=(rear+1)%size;
que[rear]=item;

}
}

Deletion
int qempty()
{

if(front==-1)
return 1;

else
return 0;

}
int delete()
{

int item;
if(qempty())

printf("queue is empty");
else
{

item=que[front];
if(front==rear) {

front=rear=-1;
}
else
front=(front+1)%size;
printf("the deleted item is%d ",item);

}

Display
void display()
{

int i;
if(qempty())
{

printf("queue is empty");
return;

}
i=front;
while(i!=rear)
{

printf(“%d”,que[i]);
i=(i+1)%size;

}
Printf(“%d”,que[i]);

}

Priority Queue

Priority Queue
A Priority Queue – a different kind of queue.
Similar to a regular queue:

insert in rear,
remove from front.

Items in priority queue are ordered by some key
Item with the lowest key / highest key is always at the front

from where they are removed.

Items then „inserted‟ in „proper‟position

Idea behind the Priority Queue is simple:
Is a queue
But the items are ordered by a key.
Implies your ‘position’ in the queue may be changed by
the arrival of a new item.

Applications of Priority Queues

Many, many applications.

Scheduling queues for a processor, print queues, transmit
queues, backlogs, etc.….

This means this item will be in the front of queue

“Obtained” via a remove().

Note: a priority queue is no longer FIFO!
You will still remove from front of queue, but

insertions are governed by a priority.

Priority Queues: Access

remove()
So, the first item has priority and can be retrieved (removed) quickly and

returned to calling environment.
Hence, „remove()‟is easy (and will take O(1)time)

insert()

But, we want to insert quickly. Must go into proper position.
For our purposes here: Implementing data structure: array;

• slow to insert(), but for
small number of items in the pqueue, and

where insertion speed is not critical,

• this is the simplest and best approach.

16

Priority Queues

Operations performed on priority queues

1) Find an element,

2) Insert a new element

3) Delete an element, etc.

Two kinds of (Min, Max) priority queues exist:

• In a Min priority queue, find/delete operation finds/deletes the
element with minimum priority

• In a Max priority queue, find/delete operation finds/deletes the
element with maximum priority

• Two or more elements can have the same priority

17

Implementation of Priority Queues

Implemented using heaps and leftist trees

• Heap is a complete binary tree that is efficiently stored using
the array-based representation

• Leftist tree is a linked data structure suitable for the
implementation of a priority queue

18

Heap Operations

When n is the number of elements (heap size),

• Insertion

• Deletion

O(log2n)

O(log2n)

• Initialization O(n)

Insertion into a Max Heap
9

8

6

7

7 2 6

5 1 5

19

•

• Are we finished?

9

8

6

7

7 2 6

5 1 20

20

•

• Are we finished?

Insertion into a Max Heap

9

8

6

7

2 6

5 1 7

20

21

•

• Are we finished?

Insertion into a Max Heap

9

6

7

2 6

5 1 7

8

20

22

Insertion into a Max Heap

•

• Are we finished?

6

7

2 6

5 1 7

8

9

20

23

Insertion into a Max Heap

•

• Are we finished?

Complexity of Insertion

At each level, we do (1) work

Thus the time complexity is O(height) =
O(log2n), where n is the heap size

24

•

• What happens when we

delete an element?

Deletion from a Max Heap
20

6

7

2 6

5 1 7

25

15

8

9

Deletion from a Max Heap

•

• Are we finished?

6

7

2 6

5 1 7

26

15

8

9

Deletion from a Max Heap

•

•

6

7

2 6

5 1 7

27

15

8

9

•

• Are we finished?

6

7

2 6

5 1 7

15

9

Deletion from a Max Heap
8

28

•

• Are we finished?

6

7

2 6

5 1 7

9

Deletion from a Max Heap
15

8

29

6

7

2 6

5 1 7

8

Deletion from a Max Heap
15

9

30

•

• Are we finished?

Complexity of Deletion

• The time complexity of deletion is the same as
insertion

• At each level, we do (1) work

• Thus the time complexity is O(height) =
O(log2n), where n is the heap size

31

32

END!!!

