
Testing

Sr. Nisha C D
Assistant Professor, Dept. of Computer Science
Little Flower College, Guruvayoor

Outline

• Fundamentals of Software Testing
– Testing techniques

• White-box testing
– Control-flow-based testing– Control-flow-based testing
– Data-flow-based testing

• Black-box testing
– Equivalence partitioning

Testing Objective

• Testing: a process of executing software with
the intent of finding errors

• Good testing: a high probability of finding • Good testing: a high probability of finding
as-yet-undiscovered errors

• Successful testing: discovers unknown errors

Basic Definitions

• Test case: specifies
– Inputs + pre-test state of the software
– Expected results (outputs an state)

• Black-box testing: ignores the internal logic of • Black-box testing: ignores the internal logic of
the software, and looks at what happens at the
interface (e.g., given this inputs, was the produced
output correct?)

• White-box testing: uses knowledge of the
internal structure of the software
– E.g., write tests to “cover” internal paths

Testing Approaches

• Will look at a sample of approaches for testing

• White-box testing
– Control-flow-based testing– Control-flow-based testing

– Data-flow-based testing

• Black-box testing
– Equivalence partitioning

Control-flow-based Testing

• A traditional form of white-box testing

• Step 1: From the source, extract a CFG

• Step 2: Design test cases to cover certain elements • Step 2: Design test cases to cover certain elements
of this graph
– Nodes, edges, paths

• Basic idea: given the CFG, define a
coverage target and write test cases to
achieve it

Statement Coverage

• Traditional target: statement coverage
– Need to write test cases that cover all nodes in the

control flow graph

• Intuition: code that has never been executed • Intuition: code that has never been executed
during testing may contain errors
– Often this is the “low-probability” code

Example
• Suppose that we write and

execute two test cases
• Test case #1: follows path 1-

2-exit (e.g., we never take the
loop)

1

2

loop)
• Test case #2: 1-2-3-4-5-7-8-

2-3-4-5-7-8-2-exit (loop
twice, and both times take the
true branch)

• Problems?

3

4

5 6
7

8

T F

Branch Coverage

• Target: write test cases that cover all
branches of predicate nodes
– True and false branches of each IF– True and false branches of each IF

– The two branches corresponding to the
condition of a loop

– All alternatives in a SWITCH statement

• In modern languages, branch coverage
implies statement coverage

Branch Coverage
• Statement coverage does not imply branch

coverage

• Can you think of an example?

• Motivation for branch coverage: experience • Motivation for branch coverage: experience
shows that many errors occur in “decision
making” (i.e., branching)
– Plus, it subsumes statement coverage.

Example

• Same example as before

• Test case #1: follows path 1-
2-exit

1

2

• Test case #2: 1-2-3-4-5-7-8-
2-3-4-5-7-8-2-exit

• Problem?

3

4

5 6
7

8

T F

Achieving Branch Coverage

• For decades, branch coverage has been
considered a necessary testing minimum

• To achieve it: pick a set of start-to-end
paths in the CFG, that cover all branches

• To achieve it: pick a set of start-to-end
paths in the CFG, that cover all branches
– Consider the current set of chosen paths
– Try to add a new path that covers at least one

edge that is not covered by the current paths

• Then write test cases to execute these paths

Some Observations

• It may be impossible to execute some of the
chosen paths from start-to-end
– Why? Can you think of an example?– Why? Can you think of an example?

– Thus, branches should be executed as part of
other chosen paths

• There are many possible sets of paths that
achieve branch coverage

Example

if x ≤ y

x=y
T

F

Candidate start-to-end paths:
(1) green path
(2) red path

if x == y

z=1 z=0
FT% branch coverage?

Problem?

Data-flow-based Testing

• Basic idea: test the connections between variable
definitions (“write”) and variable uses (“read”)

• Starting point: variation of the control flow graph
– Statement nodes represent one statement

• Set Def(n) contains variables that are defined at
node n (i.e., they are written)
– The definitions at node n

• Set Use(n): variables that are read
– The uses at node n

Example

Assume y is an input variable

1 s:= 0;
2 x:= 0;
3 while (x<y) {
4 x:=x+3;

Def(1) := {s}, Use(1) :=
Def(2) := {x}, Use(2) :=
Def(3) := , Use(3) := {x,y}
Def(4) := {x}, Use(4) := {x}

1

2

3

4

54 x:=x+3;
5 y:=y+2;
6 if (x+y<10)
7 s:=s+x+y;

else
8 s:=s+x-y;

Def(4) := {x}, Use(4) := {x}
Def(5) := {y}, Use(5) := {y}
Def(6) := , Use(6) := {x,y}
Def(7) := {s}, Use(7) := {s,x,y}

Def(8) := {s}, Use(8) := {s,x,y}
Def(9) := , Use(9) :=
Def(10) := , Use(10) :=

5

6

7 8

9

10

Remember Reaching Definitions

• Definition A statement that may change the
value of a variable (e.g., x = i+5)

• A definition of a variable x at node k • A definition of a variable x at node k
reaches node n if there is a path from k to n,
clear of a definition of x.

k

n

x = …

… = x

x = …

Def-use Pairs

• A def-use pair (DU pair) for variable x is a pair of
nodes (n1,n2) such that
– x is in Def(n1)

– The definition of x at n1 reaches n2– The definition of x at n1 reaches n2

– x is in Use(n2)

• In other words, the value that is assigned to x at
n1 is used at n2
– Since the definition reaches n2, the value is not
“killed” along some path n1...n2.

Examples of Reaching
Definitions

Assume y is an input variable

1 s:= 0;
2 x:= 0;
3 while (x<y) {
4 x:=x+3;

1

2

3

4

5

What are the def-use pairs for s?

What are the def-use pairs for x?

4 x:=x+3;
5 y:=y+2;
6 if (x+y<10)
7 s:=s+x+y;

else
8 s:=s+x-y;

5

6

7 8

9

10
So, how do we compute def-use pairs?

Data-flow-based Testing

• Data-flow-based coverage target: DU pair coverage
– Compute all DU pairs, and construct test cases that cover

these pairs. HOW DO WE COMPUTE DU PAIRS?

• Several coverage targets (criteria), with different • Several coverage targets (criteria), with different
relative strength

• Motivation for data-flow-based testing coverage:
see the effects of using the values produced by
computations
– Focuses on the data, while control-flow-based testing

focuses on the control

Finally, the targets (criteria):
All-defs criterion

• If variable x is in Def(n1), the all-defs
criterion requires the test data to exercise at
least one path free of definition of x which least one path free of definition of x which
goes from n1 to some node n2 such that
(n1,n2) is a DU pair for x.
– Remember, x is defined at n1,

– The definition of x at n1 reaches n2, and

– x is used at n2

All-uses criterion

• If variable x is in Def(n1), the all-uses
criterion requires the test data to exercise at
least one path free of definition of x which least one path free of definition of x which
goes from n1 to each node n2 such that
(n1,n2) is a DU pair for x.

All-DU-paths criterion

• If variable x is in Def(n1), the all-DU-paths
criterion requires the test data to exercise
each path free of definition of x which goes each path free of definition of x which goes
from n1 to each node n2 such that (n1,n2)
is a DU pair for x.

• So what is the relative strength of the three
criteria: All-defs, All-uses, All-DU-paths?

All-defs, all-uses, all-du-paths

Assume y is input

1 s:= 0;
2 x:= 0;
3 while (x<y) {
4 x:=x+3;

1. Design test cases that cover all-uses

4 x:=x+3;
5 y:=y+2;
6 if (x+y<10)
7 s:=s+x+y;

else
8 s:=s+x-y;
}

Black-box Testing

• Unlike white-box testing, no knowledge
about the internals of the code

• Test cases are designed based on • Test cases are designed based on
specifications
– Example: search for a value in an array

• Postcondition: return value is the index of some
occurrence of the value, or -1 if the value does not
occur in the array

• We design test cases based on this spec

Equivalence Partitioning

• Basic idea: consider input/output domains
and partition them into equiv. classes
– For different values from the same class, the

software should behave equivalentlysoftware should behave equivalently

• Use test values from each class
– Example: if the range for input x is 2..5, there

are three classes: “<2”, “between 2..5”, “5<”
– Testing with values from different classes is

more likely to uncover errors than testing with
values from the same class

Equivalence Classes

• Examples of equivalence classes
– Input x in a certain range [a..b]: this defines three

classes “x<a”, “a<=x<=b”, “b<x”
– Input x is boolean: classes “true” and “false”– Input x is boolean: classes “true” and “false”
– Some classes may represent invalid input

• Choosing test values
– Choose a typical value in the middle of the class(es)

that represent valid input
– Also choose values at the boundaries of all classes:

e.g., if the range is [a..b], use a-1,a, a+1, b-1,b,b+1

Example

• Suppose our spec says that the code accepts
between 4 and 24 inputs, and each one is a 3-digit
positive integer

• One dimension: partition the number of inputs• One dimension: partition the number of inputs
– Classes are “x<4”, “4<=x<=24”, “24<x”
– Chosen values: 3,4,5, 14, 23,24,25

• Another dimension: partition the integer values
– Classes are “x<100”, “100<=x<=999”, “999<x”
– Chosen values: 99,100,101, 500, 998,999,1000

Another Example

• Similar approach can be used for the output:
exercise boundary values

• Suppose that the spec says “the output is between
3 and 6 integers, each one in the range 1000-25003 and 6 integers, each one in the range 1000-2500

• Try to design input that produces
– 3 outputs with value 1000
– 3 outputs with value 2500
– 6 outputs with value 1000
– 6 outputs with value 2500

Example: Searching

• Search for a value in an array
– Return value is the index of some occurrence of

the value, or -1 if the value does not occur in
the arraythe array

• One partition: size of the array
– Since people often make errors for arrays of

size 1, we decide to create a separate
equivalence class

– Classes are “empty arrays”, array with one
element”, “array with many elements”

Example: Searching

• Another partition: location of the value
– Four classes: “first element”, “last element”, “middle element”,

“not found”
Array Value Output
Empty 5 -1Empty 5 -1
[7] 7 0
[7] 2 -1
[1,6,4,7,2] 1 0
[1,6,4,7,2] 4 2
[1,6,4,7,2] 2 4
[1,6,4,7,2] 3 -1

Testing Strategies

• We talked about testing techniques (white-box,
black-box)

• Many unanswered questions
– E.g., who does the testing? Which techniques should

we use and when? And more…

• There are no universal strategies, just principles
that have been useful in practice
– E.g., the notions of unit testing and integration testing

Some Basic Principles

• Testing starts at the component level and works
“outwards”
– Unit testing, integration testing, system testing

• Different testing techniques are appropriate at • Different testing techniques are appropriate at
different scopes

• Testing is conducted by developers and/or by a
specialized group of testers

• Testing is different from debugging
– Debugging follows successful testing

Scope and Focus

• Unit testing: scope = individual component
– Focus: component correctness
– Black-box and white-box techniques

• Integration testing: scope = set of interacting • Integration testing: scope = set of interacting
components
– Focus: correctness of component interactions
– Mostly black-box, some white-box techniques

• System testing: scope = entire system
– Focus: overall system correctness
– Only black-box techniques

Test-First Programming

• Modern practices emphasize the importance of
testing during development

• Example: test-first programming
– Basic idea: before you start writing any code, first write

the tests for this code

– Write a little test code, write the corresponding unit
code, make sure it passes the tests, and then repeat

– What programming methodology uses this approach?

– What are the advantages of test-first programming?

Advantages of Test-First
Programming

• Developers do not “skip” unit testing
• Satisfying for the programmer: feeling of

accomplishment when the tests pass
• Helps clarify interface and behavior before • Helps clarify interface and behavior before

programming
– To write tests for something, first you need to

understand it well!

• Software evolution
– After changing existing code, rerun the tests to gain

confidence (regression testing)

