
Subject : Data structure

Topic: Infix to postfix conversion

Name of the teacher: Lisna Thomas

Academic year: 2020-2021

INFIX NOTATION

 Infix notation is the common arithmetic and logical formula

notation, in which operators are written infix-style between

the operands they act on

 E.g. A + B

POSTFIX NOTATION

 In Postfix notation, the operator comes after the Operand.

 For example, the Infix expression A+B will be written as AB+

in its Postfix Notation.

 Postfix is also called ‘Reverse Polish Notation’

PREFIX NOTATION

 In Prefix notation, the operator comes before the operand.

 The Infix expression A+B will be written as +AB in its Prefix

Notation.

 Prefix is also called ‘Polish Notation’

CONVERSION FROM INFIX TO POSTFIX ALGORITHM

Step1

 Scan the Infix expression from left to right for tokens

(Operators, Operands & Parentheses) and perform the steps 2

to 5 for each token in the Expression

ALGORITHM

Step2

 If token is operand, Append it in postfix expression

Step3

 If token is a left parentheses “(“, push it in stack.

ALGORITHM

Step4

 If token is an operator,

 Pop all the operators which are of higher or equal

precedence then the incoming token and append them (in

the same order) to the output Expression.

 After popping out all such operators, push the new token

on stack.

ALGORITHM

Step5

 If “)” right parentheses is found,

 Pop all the operators from the Stack and append them to

Output String, till you encounter the Opening Parenthesis

“(“.

 Pop the left parenthesis but don’t append it to the output

string (Postfix notation does not have brackets).

ALGORITHM

Step6

 When all tokens of Infix expression have been scanned. Pop

all the elements from the stack and append them to the

Output String.

 The Output string is the Corresponding Postfix Notation.

EXAMPLE

 Let the incoming the Infix expression be:

A * (B + C) – D / E

Stage 1: Stack is empty and we only have the Infix

Expression.

EXAMPLE

Stage 2

 The first token is Operand A Operands are Appended to the

Output as it is.

EXAMPLE

Stage 3

 Next token is * Since Stack is empty (top==NULL) it is

pushed into the Stack

EXAMPLE
Stage 4

 Next token is (the precedence of open-parenthesis, when it is to go

inside, is maximum.

 But when another operator is to come on the top of „(„ then its

precedence is least.

EXAMPLE

Stage 5

Next token, B is an operand which will go to the Output expression

as it is

EXAMPLE

Stage 6

Next token, + is operator, We consider the precedence of top

element in the Stack, „(‘. The outgoing precedence of open

parenthesis is the least (refer point 4. Above). So + gets pushedinto

the Stack

EXAMPLE

Stage 7

 Next token, C, is appended to the output

EXAMPLE

Stage 8

Next token), means that pop all the elements from Stack and

append them to the output expression till we read an opening

parenthesis.

EXAMPLE

Stage 9

Next token, -, is an operator. The precedence of operator on the top

of Stack „*‘ is more than that of Minus. So we pop multiply and

append it to output expression. Then push minus in the Stack.

EXAMPLE

Stage 10

Next, Operand ‘D‘ gets appended to the output.

EXAMPLE

Stage 11

Next, we will insert the division operator into the Stack because its

precedence is more than that of minus.

EXAMPLE

Stage 12

 The last token, E, is an operand, so we insert it to theoutput

Expression as it is.

EXAMPLE

Stage 13

 The input Expression is complete now. So we pop the Stack and

Append it to the Output Expression as we pop it.

THE END

……. Thank You ……..

www.ustudy.in

http://www.ustudy.in/

