

 Specific requirements of the software to be

built are gathered and documented in the

form of system requirement

specification(SRS)

 This phase comes up with schedule, the

scope and resource requirement of project

 At the end ,project plan and test plan

documents are delivered

 This phase figure out how to meet the

requirements

 It is divided into 2 levels. High level design

and low level design

 System design description (SDD) document is

created at end of this phase

 It includes coding the program in choosen

programming language

 It includes identifying and removing defects

in the software

Different kinds of testing are

Unit testing: Modules are tested individually

 Integration testing: Interconnection among

modules are tested

 System testing: System as a whole is tested

 Acceptance testing: Tested with real life data

Defects occur after the deployment of

software in customer’s environment should

be corrected

 There are 3 kinds of maintaince

 Corrective: To correct errors that were not

discovered during development

 Adaptive: For porting software to work in

new environment

 Preventive: for eg changing the application

program code to avoid security hole in

operating system code

 It check whether we are building product right

 It is done to prevent defects before they take
shape

 It includes requirement review, design review,
code review etc

We can assume verification and quality
assurance to be one

 It check whether we are building right

product

 It finds defect and fix them

 It includes different kind of testing like unit

testing, integration testing etc

 Validation and quality control are assumed to

be one

 ETVX model(entry ,task ,verification ,exit)

entry criteria:

specify when that phase can be started and
conditions that input to phase should satisfy

Tasks:

activities to be carried out in that phase

Verification:

Specify the methods of checking

that the tasks have been carried out

correctly

Exit criteria:

conditions that output of each phase

should satisfy

Phases are organized

in linear order

At end of each

phase certification

is done to the o/p

formed

 Simple

 Straight forward

 Best for projects where requirements are

well understood

 Requirements should be given first . can’t

add requirements in between development

 It follow big bang theory. Software is

delivered in one shot . It have great risk

 Formal documents are needed at end of each

phase

 A prototype is made with known

requirements and remaining phases are done

informally.

 After this the prototype is provided to client

and according to their suggestions changes

are made

Once the requirements are obtained,

prototype is discarded

 It is suitable for projects which has no clear

idea about requirements at first

 Requirements need not given first

Minimal documentation is needed

DISADVANTAGES

 Cost is high

Quick and dirty method. Because it focus on

quick development rather than quality

 In this it is not a prototype that is built but

actual product itself.

 The built application is not discarded

 CASE(computer aided software engineering)

tools are used through out the life cycle

 Software is developed in increments, each

increment adding some functional

capabilities to system

 Feedback path– in each phase corrections are

made and reflected in later phase

 Each release delivers an operational product

Not suitable for small projects

 Requirements should be given first

 Limited customer interaction

 It executes phases in sequential manner in V

shape

 For each phase there is a testing activity

corresponding to it

 It involves static analysis technique

(review)done without executing code and

dynamic analysis technique done by

executing code

 early design of tests enables better

validation of individual phases

 It bring parallelism in different parts of

product

When one module satisfy a given phase of

testing , can move to next phase of testing ,

without waiting for all modules to move in

from one phase of testing to another

 It is a way of testing external functionality of

code by examing and testing program code

 It takes into account the program code, code

structure and internal design flow

 It is also known as clear box, glass box or

open box

White box testing

Static testing
Structural testing

Unit /code functional testing code coverage Code complexity

Statement coverage

Path coverage

Condition coverage

Function coverage

Cyclomatic complexity

 This type of testing requires only source code

of product not the binaries or executables

 It does not involve executing the programs

on computer but involve select people going

through code

 Static testing by humans: Humans read the

program code to detect error rather than

computers executing the code to find errors

 It is done by author of code

 It is done by comparing code with design to

make sure that code does what it is supposed

to do

 There is no process or structure that verify

the effectiveness of desk checking

 The programmer who knows the code well is

well equipped to understand his own code

 There are fewer scheduling and logistics

overhead

Defects are detected and corrected with

minimum time delay

Developer is not the best person to detect

problems in his own code

Developers generally prefer to write new

code rather than do any form of testing

 It is person dependent and informal

 These are group oriented and less formal

than inspection method

 It bring multiple perspective

 A set of people look at program code and

raise questions .Author explains logic and

answer the questions. if the author is unable

to answer he/she take those questions and

find answers

 This method is to detect all faults,violations and
other side effect

 It has high degree of formalism

 There are 4 roles in inspection

 Author:

 A moderator who is expected to formally run
the inspection according to process

 Inspectors are the people who actually provides
review comments for code

 Scribe takes detailed notes during the inspection
meeting and circulates them to inspection team
after meeting

 It is time consuming

 The logistics and shedulings can become an

issue

 It is not always possible to go through every

lines of code

 It is actually run by the computer on the

built product

 It takes into account code structure, internal

design and how they are coded

 It involves quick test that checks out any

obvious mistakes .This is done prior to formal

reviews of static testing so that review

mechanism does not waste time

 Initial test can be done either by running the

product under a debugger or IDE by building

a debug version of product

 It involves designing and executing test cases

and finding out percentage of code that is

covered by testing

 Percentage of code covered by testing can be

found by technique called ‘instrumentation

of code’

 Instrumented code can monitor and keep

audit of what portions of code are covered

Uses of code coverage technique

 Performance analysis and optimization

 Resource usage analysis

 Checking of critical sections or concurrency

related parts of code

 Identifying memory leaks

Dynamically generated code

Different types of coverage are

 Statement coverage

 Path coverage

 Condition coverage

 Function coverage

 It is a technique in which all the executable

statements in the source code are executed

atleast once

 It is used for calculation of number of

statements in the source code which have

been executed
 Statement coverage = Number of executed statements *100

Total number of statements

 It test all paths of the program

 This is a technique which ensures that all the

paths of the program are traversed atleast

once

 Path coverage = Total paths exercised *100

Total paths in program

 It cover all the possible outcomes(true and

false) of each condition of decision point at

least once

 Condition coverage = Total decisions exercised *100

Total number of decisions in the program

 This technique cover all functions in a program

 It is easier to achieve 100 percent function

coverage than 100 percent coverage in any of

earlier methods

 Function coverage gives more focus on functions

which are frequently called and hence it help in

improving the performance and quality of the

product

 Function coverage = Total functions exercised *100

Total number of functions in the program

 This testing finds the complexity of code

 ‘Cyclomatric complexity’ is a metric that

quantifies the program’s complexity

 A program is represented in the form of flow

graph

To convert a flow chart to flow graph following
steps are done

 Identify predicates or decision points in program

 Ensure that predicates are simple

 Combine all sequential statements into a single
node

 When a set of sequential statements are
followed by a single predicate, combine all
sequential statements and predicate into one
node and have 2 edges emanating from this one
node . such nodes are called ‘predicate nodes’

 Make sure all nodes terminate at some node

 Cyclomatic complexity=E-N+2(where

E=edges,N=node)

 Cyclomatic complexity=P+1(where

P=predicate)

 It requires knowledge about program code

and programming language

Human tendency of a developer being unable

to find the defects in his or her code

 Fully tested code may not correspond to

realistic scenarios

