Newton's Laws of Motion

FRITTY P F
DEPARTMENT OF PHYSICS
MECHANICS 1 -FIRST SEMESTER
2021

Force and mass

Force - push or
pull; required to
change an object's motion.

Vector - show
magnitude and
direction

Four Forces Known in the Universe

- Electromagnetic- caused from electric and magnetic interactions
- Strong Nuclear- Responsible for holding nucleus together in the atom; strongest force; acts over the shortest distance

Gravitation- weakest force; acts over the longest distance

- Keak Nuclear- Responsible for radioactivity in atoms

Types of Forces

- There are two main types of forces
- Contact
- Field

Field Force

Contac† Forces

Contact Force

- Exists when an object from the external world touches a system and exerts a force on it
- Think About a Book on a Table
- If you push it, you are exerting a contact force
- 1 f you put it down, no longer interacting... so no more force from you
But table is touching it- table is now exerting a force

Field Forces

- An object can move without something directly touching it
- What if you dropped the book?
- It falls due to gravity
- Gravitational Force is a field force.
- They affect movement without being in physical contact
- Can you think of other field forces?
- Magnetic fields

Electric Forces
Nuclear Forces

Two Types of Forces

- Example of Contact

Forces

- Friction
- Tension
- Examples of Field Forces
- Gravitational
- Electric
- Magnetic
- Applied
- Spring

Force and mass

- Mass - measurement of how difficult it is to change the objects velocity
- Inertia - resistance to change in velocity
- So mass is a measurement of an object's inertia

Newton's Laws

Background

Sir Isaac Newton (1643-1727)
an English scientist and mathematician famous for
his discovery of the law of gravity also discovered the three laws of motion.

Tpday/these laws are known as Newton's
Laws of Motion and describe the motion of
dil objects on the scale we experience in
фur everyday lives.

Newton's Laws of Motion

1. An object in motion tends to stay in motion and an object at rest tends to stay at rest unless acted upon by an unbalanced force.
2. Force equals mass times acceleration ($\mathrm{F}=\mathrm{ma}$).
3. Før every action there is an equal and opposite reaction.

Newton's First Law

An opject at rest tends to stay at rest and an object in motion tends to stay in motion unless acted upon by an unbalanced force.

What does this mean?

Basically, an object will "keep doing what it was doing" unless acted on by an unbalanced force.

If the object/was sitting still, it will remain stationary. If it was moxing at a constant velocity, it will keep moving.

It fakes force to change the motion of an object.

What is meant by unbalanced force?

The forces on the book are balanced.

If the forces on an object are equal and opposite, they are said to be palanced, and the object experiences no change in motion. If they are not equal and opposite, then the forces are unbalanced and the motion of the object changes.

Some Examples from Real Life

A soccer ball is sitting at rest. It takes an unbalanced force of a kick to change its motion.

Tyo teams are playing tug of war. They are both exerting equal force on the rope in opposite directions. This balanced force results in no change of motion.

Newton's First Law is also called the Law of Inertia

Inertia: the tendency of an object to resist changes in its state of motion

The First Law states that all objects have inertia. The more mass an object has, the more inertia it has (and the harder it is to change its motion).

