SEMESTER VI -BIOCHEMISTRY

POLYSACCHARIDES

JASMINE MARIYA A J ASSISTANT PROFESSOR ON CONTRACT LITTLE FLOWER COLLEGE ,GURUVAYUR

POLYSACCHARIDES

- They are polymerised products of many monosaccharide units
- Also known as glycans
- Empirical formula (C₆H₁₀O₅)ⁿ
- They are commonly made up of more than 10 monosaccharide units
- More than 4 different kinds of monosaccharide units seldom occur in a polysaccharide
- All the glycosidic linkages of a polysaccharide may not be the same

Polysaccharides

Homo and Heteropolysaccharides

Homo-polysaccharides contain only a single type of monomeric units. Hetero-polysaccharides contain two or more different kinds of monomeric units.

Examples of Homopolysaccharides: glycogen in animals; starch and cellulose in plants.

Starch and glycogen serve as stored forms of fuel. Cellulose serves structural roles.

Example of Heteropolysaccharides: peptidoglycan of bacterial cell wall.

FIGURE 7-13 Homo- and heteropolysaccharides. Polysaccharides may be composed of one, two, or several different monosaccharides, in straight or branched chains of varying length.

HOMOPOLYSACCHARIDES

- Made up of single kind of monosaccharides
- Four kinds :
- 1.Glucans polymer of glucose units eg: starch,Glycogen
- 2.Fructans : polymer of fructose

Eg: Inulin

- 3.Mannans : Polymer of mannose
- 4.Xylans :polymer of xylose

Starch

- Storage form of plant polysaccharide also known as reserve carbohydrate of plant kingdom
- Sources : Potatoes ,Tapioca ,Cereals (rice,wheat) and other food grains
- Composed of two types of glucose polymers, Amylose and Amylopectin

Amylose : Composed of 10-20%

Made up of glucose units with α1→4 glycosidic linkage Unbranched long chain

Amylopectin : Composed of 80-90%

Made up of glucose units with with $\alpha 1 \rightarrow 4$ and with $\alpha 1 \rightarrow 6$ glycosidic linkages

Highly branched, branch points are made by $\alpha 1 \rightarrow 6$ glycosidic linkage

Amylopectin CH20H CH2OH a-1,6-glycosidic bonds ŃН CH₂OH CH2OH CH₂OH CH₂OH OH OH OH OH 'nн 'nн

a-1,4-glycosidic bonds

n

H₂OH

н

Glycogen

- Reserve carbohydrate in animals
- It is stored in liver and muscle
- Glycogen is composed of glucose units made up of α1→4 links in straight chain and α1→6 linkages in branching points
- Glycogen is more branched and more compact than amylopectin

Cellulose

- Supporting tissues of plants
- Most abundant organic material in nature
- It is mage up of glucose units linked through beta 1→4 linkages.
- It has a straight line structure with no branching points
- Beta 1→4 linkages are digested by cellobiase enzyme (also cellulase) but this enzyme is absent in animals and human digestive tracts .Hence cellulose cannot be digested

Other important homopolysaccharides

- Chitin found in exoskeleton of insects
- Callose –found in plants in response to wounds
- Inulin fructan starch ,found in tubers of the family asteraceae

HETROPOLYSACCHARIDES

- Polysaccharides composed of more than one monosaccharide units
- Eg: agar , mucopolysaccharides

Agar

- It is prepared from sea weeds (Gelidium, gracilaria etc.)
- It contains agarose and agaropectin and it contains mainly galactose sulphate,galacturonic acid ,and sulphuric acid esters
- It is dissolved in water at 100°C, which upon cooling forms a gel
- It cannot be digested by bacteria hence used as a supporting agent fr bacterial culture

MUCOPOLYSCCHARIDES

- Also kown as glycosamino glycans (GAG 's)
- They are hetero polysaccharides made up of uronic acid and amino sugars
- Since they contain charged groups ,they can attract water molecules and form viscous solutions
- Common mucopolysaccharides are ,Hyluronic acid, Chondrotin sulphate ,heparin sulpate keratan sulphate etc.

Some common mucopolysaccharides (glycosaminoglycans – GAG)			
Mucopolysaccharide	Composition	Distribution	Functions
Hyaluronic acid	D-glucuromic acid, N- acetylglucosamine	Connective tissue, syn- ovial fluid, vitreous humour.	Serves as a lubricanf and shorck-absorber. Pro- motes wound healing.
Chondroitin sulphate	D-glucuronic acid, N- acetylgalactosamine sulphate.	Skin, cartilage, bone, walls of blood vessels.	Maintains the shape and structure of tissues.
Heparin	D-glucoronate sulphate, N-sulphoglucosamine sulphate.	Blood, lungs, liver kid- neys, spleen.	Acts as an anti-coagu- lant.
Dermatan sulphate	L-iduronic acid, N- acetylglucosamine sul- phate.	Skin, heart valves, valves of blood vessels.	Maintains the shape of tissues.
Keratan sulphate	D-galactose, N-acetyl- glucosamine sulphate	Cartilage, connective tissues cornea.	Makes the corne a trans- parent.