Theory of Computation and Formal Languages

Jeena George
Department of Computer Application

Theory of Computation

Lecture 01

Introduction

Theory of Computation: areas

- Formal Language Theory
- language $=$ set of sentences (strings)
- grammar = rules for generating strings
- production/deduction systems
- capabilities \& limitations
- application: programming language specification
- Automata Theory (Abstract Machines)
- models for the computing process with various resources
- characterize ` ${ }^{\text {computable" }}$
- capabilities \& limitations
- application: parsing algorithms
- Complexity Theory
- inherent difficulty of problems (upper and lower bounds)
- time/space resources
- intractable or unsolvable problems
- application: algorithm design

Major Themes

- Study models for
- problems
- machines
- languages
- Classify
- machines by their use of memory
- grammars and languages by type
- languages by class hierarchies
- problems by their use of resources (time, space, ...)
- Develop relationships between models
- reduce solution of one problem to solution of another
- simulate one machine by another
- characterize grammar type by machine recognizer

Describing Problems

- Problems described by functions
- functions assign ouputs to inputs
- described by tables, formulae, circuits, math logic, algorithms Example: TRAVELLING SALESPERSON Prob1em

Input: $n(n-1) / 2$ distances between n cities
Output: order to visit cities that gives shortest tour (or length of tour)

- Problems described by languages
- ' ${ }^{\text {y }}$ yes/no'' problems or decision problems
- a language represents a problem or question
- input strings in the language: answer is "'yes''; else "no"

Example: HALTING Problem
Input: a string $w \in \operatorname{and}($ Turing Machine M
Output: "yes" if $\quad(e, w) \in ; \grave{L}_{H}^{\prime} \mathrm{no}^{\prime \prime}$ otherwise

- equi\#at (entw
where

Types of Machines

- Logic circuit
- memoryless; values combined using gates

Types of Machines (cont.)

- Finite-state automaton (FSA)
- bounded number of memory states
- step: input, current state determines next state \& output

Mod 3 counter
state/ouput (Moore) machine

- models programs with a finite number of bounded registers -reducible to 0 registers

Types of Machines (cont.)

- Pushdown Automaton (PDA)
- finite control and a single unbounded stack

- models finite program + one unbounded stack of bounded register

Types of Machines (cont.)

- Pushdown Automaton (PDA)
- finite control and a single unbounded stack

- models finite program + one unbounded stack of bounded register

accepting

Types of Machines (cont.)

- Pushdown Automaton (PDA)
- finite control and a single unbounded stack

- models finite program + one unbounded stack of bounded register

Types of Machines (cont.)

- Pushdown Automaton (PDA)
- finite control and a single unbounded stack

- models finite program + one unbounded stack of bounded register

Types of Machines (cont.)

- Random access machine (RAM)
- finite program and an unbounded, addressable random access memory of "registers"
- models general programs
- unbounded \# of bounded registers

$$
\text { Example: } \begin{gathered}
\frac{R_{0} \leftarrow R_{0}+R_{1}}{L_{0}: J M P Z R_{1} L_{1}} \\
I N C R_{0} \\
D E C R_{1} \\
\\
\\
\\
L_{1}: C O P L_{0} \\
\\
\\
\end{gathered}
$$

$\rightarrow b$

Types of Machines (cont.)

- Turing Machine (TM)
- finite control \& tape of bounded cells unbounded in \# to R
- current state, cell scanned determine next state \& overprint symbol
- control writes over symbol in cell and moves head 1 cell L or R
- models simple '`sequential'r memory; no addressability
- fixed

How Machines are Used

- To specify functions or sets
- Transducer - maps string to string

- Acceptor - "'recognizes" or "`accepts'r a set of strings

- M accepts strings which cause it to enter a final state
- Generator - "`generates" a set of strings

- M generates all values generated during computation

How Machines are Used

The equivalence between acceptor and generator

- Using an acceptor to implement a generator

$$
\begin{aligned}
& \text { \#include "acceptor. } \mathrm{h} \text { " } \\
& \text { generator }()\{ \\
& \quad \text { for } \mathrm{w}_{\mathrm{i}}=\mathrm{w}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots \text {, do if accept }\left(\mathrm{w}_{\mathrm{i}}\right) \\
& \operatorname{print}\left(\mathrm{w}_{\mathrm{i}}\right) ; \\
& \}
\end{aligned}
$$

How Machines are Used

The equivalence between acceptor and generator

- Using a generator to implement an acceptor

\#include "generator.h"
acceptor (w) \{
while ($w_{i}=$ generator) \neq null, do
if $w=w_{i}$, return "yes"; else if $w<w_{i}$, return "no";
\}

Types of Language

- A language is a set of strings over an alphabet
$L_{1}=\left\{d^{n} b^{n} c^{n} \mid n \geq 0\right\}$
$L_{2}=\left\{a^{i} b^{j} \quad c^{k} \mid i+j=k \& i, j, k \geq 0\right\}$
- Grammars are rules for generating a set of strings

$$
\begin{aligned}
G_{1}: & S \rightarrow a B S c|a b c| \varepsilon \quad \\
& B a \rightarrow a B S c \Rightarrow a B a B S c c \Rightarrow a B a B a b c c c \Rightarrow a B a a B b c c c \Rightarrow a a B a B b c c c \\
& B b \rightarrow b b
\end{aligned} \quad \Rightarrow a a B a b b c c c \Rightarrow a a a B b b c c c \Rightarrow \text { aaabbbccc } \Rightarrow \text { ab }
$$

$$
G_{2}: S \rightarrow a S c|T| \varepsilon
$$

$$
T \rightarrow b T c \mid \varepsilon
$$

- Machines can accept languages (sets)

Types of Language (cont.)

- Languages can represent complex " problems"

Example: Traveling Salesperson Language (TSL) strings describe instances of TSP having tours of length $\leq k$ here is one string in TSL when $n=4$:
$\left(d_{12}, d_{13}, d_{14}, d_{23}, d_{24}, d_{34} ; k\right)=(4,3,2,3,2,3 ; 11)$

cities visited in order
$1,4,2,3,1 \Rightarrow$ tour distance $=10$

Types of Language (cont.)

The equivalence of language recogintion and problem solving

- An algorithm is known that will accept length n strings in

TSL in time exponential in $n--B U T$ none known for polynomial time

- TSL is an NP-complete language:
- NP is an acronym for recognizable in nondeterministic polynomial time
- NP-complete languages are "`maximally hard" among all in NP
- the best known recognition algorithms need time exponential in n
- all NP-complete languages either_require exponenital time OR can be done efficiently in poly-time, but we do not (yet) know which!
- we will use reduction to show that a language is NP-complete; major subject later on

Languages: Characterize Grammar by Machine

Classifying Problems by Resources

- What is the smallest size circuit (fewest gates) to add two binary numbers?
- What is the smallest depth circuit for binary addition? (low depth \Rightarrow fast)
- can a FSA be used to recognize all binary strings with = numbers of $1 \mathrm{~s} \& 0 \mathrm{~s}$? Must a stronger model be used?
- How quickly can we determine if strings of length n are in TSL?
- How much space is needed to decide if boolean formulae of length n are satisfiable?

Relationships between problems

Reduction

- the most powerful technique available to compare the complexity of two problems
- reducing the solution of problem A to the solution of problem $B \Rightarrow A$ is no harder than B (written $A \leq$ B)
- The translation procedure should be no harder than the complexity of A.
Example: squaring \leq multiplication: suppose we have an algorithm mult(x,y) that will multiply two integers. Then $\operatorname{square}(x)=\operatorname{mult}(x, x)$ [trivial reduction]

Relationships between problems

Reduction

- the most powerful technique available to compare the complexity of two problems
- reducing the solution of problem A to the solution of problem $B \Rightarrow A$ is no harder than B (written $A \leq$ B)
- The translation procedure should be no harder than the complexity of A.
Example: 2-PARTITION \leq MAKESPAN SCHEDULING
2-PARTITION: Given a set H of natural numbers, is there a subset H^{\prime} of H such that $\Sigma_{a \in\left(H-H^{\prime}\right)} a=\Sigma_{a \in H^{\prime}} a^{\prime}$?
MAKESPAN SCHEDULING: Given n processor and m tasks with execution time $c_{1}, c_{2}, \ldots, c_{m}$, find a shortest schedule of executing these m tasks on this n processors.
Both problems are NP-complete!

Relationships between problems

Reduction

- the most powerful technique available to compare the complexity of two problems
- reducing the solution of problem A to the solution of problem $B \Rightarrow A$ is no harder than B (written $A \leq$ B)

Obtaining Results

- Use definitions, theorems and lemmas, with proofs
- Proofs use construction, induction, reduction, contradiction
- Construction: design an algorithm for a problem, or to build a machine from a grammar, etc.
- Induction: a base case and an induction step imply a conclusion about the general case. Main tool for showing algorithms or constructions are correct.
- Reduction: solve a new problem by using the solution to an old problem + some additional operations or transformations
- Contradiction: make an assumption, show that an absurd conclusion follows; conclude the negation of the assumption holds ("reductio ad absurdum")

Summary: Theory of Computation

- Models of the computing process
- circuits
- finite state automata
- pushdown automata
- Turing machines
- capabilities and limitations
- Notion of '`effectively computable procedure' '
- universality of the notion
- Church's Thesis
- what is algorithmically computable
- Limitations of the algorithmic process
- unsolvability (undecidability) \& reducibility
- Inherent complexity of computational problems
- upper and lower bounds: classification by resource use
- NP-completeness \& reducibility

