
Theory of Computation
and Formal Languages

Jeena George

Department of Computer ApplicationDepartment of Computer Application

Theory of Computation

Lecture 01

IntroductionIntroduction

Theory of Computation: areas

• Formal Language Theory

� language = set of sentences (strings)

� grammar = rules for generating strings

� production/deduction systems

� capabilities & limitations

� application: programming language specification

• Automata Theory (Abstract Machines)

models for the computing process with various resources� models for the computing process with various resources

� characterize ``computable”

� capabilities & limitations

� application: parsing algorithms

• Complexity Theory

� inherent difficulty of problems (upper and lower bounds)

� time/space resources

� intractable or unsolvable problems

� application: algorithm design

Major Themes

• Study models for
� problems

� machines

� languages

• Classify
� machines by their use of memory

grammars and languages by type� grammars and languages by type

� languages by class hierarchies

� problems by their use of resources (time, space, …)

• Develop relationships between models
� reduce solution of one problem to solution of another

� simulate one machine by another

� characterize grammar type by machine recognizer

Describing Problems

• Problems described by functions

� functions assign ouputs to inputs

� described by tables, formulae, circuits, math logic, algorithms

Example: TRAVELLING SALESPERSON Problem

Input: n(n-1)/2 distances between n cities

Output: order to visit cities that gives shortest tour (or length of
tour)

• Problems described by languages• Problems described by languages
� ``yes/no’’ problems or decision problems

� a language represents a problem or question
� input strings in the language: answer is ``yes’’; else ``no”

Example: HALTING Problem
Input: a string w and a Turing Machine M

Output: ``yes” if ;``no” otherwise

� equivalent to asking if string

where

)(MLw ∈
(,) He w L∈

{(,) | Turing Machine halts on input }H eL e w M w=

Types of Machines
• Logic circuit

� memoryless; values combined using gates
c s

Circuit size = 5

Circuit depth = 3

zx y

Types of Machines (cont.)

• Finite-state automaton (FSA)
� bounded number of memory states

� step: input, current state determines next state & output

a

a

Mod 3 counter

state/ouput (Moore) machine0 1

a

a
• models programs with a finite number of bounded registers

•reducible to 0 registers

2

b

• Pushdown Automaton (PDA)
� finite control and a single unbounded stack

a, $/A$

a, A/AA

b, A/ε

b, A/ε

#, $/ε

}1:#{ ≥= nbaL nn

g models finite program + one unbounded stack of bounded registers

Types of Machines (cont.)

$

top

b

• Pushdown Automaton (PDA)
� finite control and a single unbounded stack

a, $/A$

a, A/AA

b, A/ε

b, A/ε

#, $/ε

}1:#{ ≥= nbaL nn

g models finite program + one unbounded stack of bounded registers

Types of Machines (cont.)

$ $

A A

$ $$$ $

A

A

A

A

A

A

A

a a a b b b #

accepting

• Pushdown Automaton (PDA)
� finite control and a single unbounded stack

a, $/A$

a, A/AA

b, A/ε

b, A/ε

#, $/ε

}1:#{ ≥= nbaL nn

g models finite program + one unbounded stack of bounded registers

Types of Machines (cont.)

$ $

A A

$ $$$ $

A

A

A

A

A

A

A

a a a b b b b
#

? rejectin
g

• Pushdown Automaton (PDA)
� finite control and a single unbounded stack

a, $/A$

a, A/AA

b, A/ε

b, A/ε

#, $/ε

}1:#{ ≥= nbaL nn

g models finite program + one unbounded stack of bounded registers

Types of Machines (cont.)

$ $

A A

$ $$$

A

A

A

A

A

A

A

a a a b b #

?
rejectin
g

• Random access machine (RAM)
� finite program and an unbounded, addressable
random access memory of ``registers”

� models general programs

� unbounded # of bounded registers

Example:

•
•
•

0 0 1R R R← +

Types of Machines (cont.)

•
Example:

4

3

2

1

0

0 1 1

0

1

0

1

:

:

L JMPZ R L

INC R

DEC R

JMP L

L CONTINUE

b

•
•
•

• Turing Machine (TM)
� finite control & tape of bounded cells unbounded in # to R

� current state, cell scanned determine next state &
overprint symbol

� control writes over symbol in cell and moves head 1 cell L
or R

� models simple ``sequential’’ memory; no addressability

Types of Machines (cont.)

� fixed amount of information (b) per cell
�

•••

Finite-

state

control

b

• To specify functions or sets
� Transducer - maps string to string

� Acceptor - ``recognizes” or ``accepts’’ a set of strings

How Machines are Used

Mw f(w)

� Generator - ``generates” a set of strings

Mw
yes

no

� M accepts strings which cause it to enter a final state

M f(w)

� M generates all values generated during computation

The equivalence between acceptor and generator

• Using an acceptor to implement a generator

How Machines are Used

Acceptor
wi yes print wi

for wi=w0,w1,w2,w3,…,do

Acceptor

no

#include “acceptor.h”

generator() {

for wi=w0,w1,w2,w3,…,do if accept(wi)
print(wi);

}

The equivalence between acceptor and generator

• Using a generator to implement an acceptor

How Machines are Used

Generator

one wi at at time
return “yes”

w>wi

w<w

w=wi
one wi at at time

#include “generator.h”

acceptor(w) {

while (wi=generator) ≠ null, do

if w=wi, return “yes”; else if w<wi,
return “no”;

}

w<wi return “no”

• A language is a set of strings over an alphabet

• Grammars are rules for generating a set of strings

Types of Language

1

2

{ | 0}

{ | & , , 0 }

n n n

i j k

L a b c n

L a b c i j k i j k

= ≥

= + = ≥

ε||:1 aaBaBbcccaBaaBbcccaBaBabcccaBaBSccaBScSabcaBScSG ⇒⇒⇒⇒⇒→

• Machines can accept languages (sets)

ε

ε

ε

|

||:

||:

2

1

bTcT

TaScSG

bbBb

aaabbbcccaaaBbbcccaaBabbcccaBBa

aaBaBbcccaBaaBbcccaBaBabcccaBaBSccaBScSabcaBScSG

→

→

→

⇒⇒⇒→

⇒⇒⇒⇒⇒→

Types of Language (cont.)

• Languages can represent complex ``problems”

Example: Traveling Salesperson Language (TSL)
strings describe instances of TSP having tours of length ≤ k

here is one string in TSL when n=4 :

)11;3,2,3,2,3,4();,,,,,(342423141312 =kdddddd

4

1

2

3

2

2

3

4

3

3

Why?

cities visited in order

1,4,2,3,1 ⇒ tour distance = 10

Types of Language (cont.)
The equivalence of language recogintion and problem solving

• An algorithm is known that will accept length n strings in

TSL in time exponential in n -- BUT none known for

polynomial time

• TSL is an NP-complete language:

� NP is an acronym for recognizable in nondeterministic
polynomial time

� NP-complete languages are ``maximally hard” among all in NP

� the best known recognition algorithms need time exponential in
n

� all NP-complete languages either require exponenital time OR
can be done efficiently in poly-time, but we do not (yet) know
which!

� we will use reduction to show that a language is NP-complete;
major subject later on

Languages: Characterize Grammar by Machine

Language Grammar Automaton
Computably Enumerable type 0 TM

(c.e.) or Recursively (unrestricted) (det. or non-
det.)

Enumerable (r.e.) α→β α ≠ ε

∪ ∪ ∪
Context-Free (CFL) type 2 non-det. PDA

A→β
CFG

∪ ∪ ∪
Regular (Reg) type 3 FSA

A→aB A →a (det. or non-
det.)

right-linear∪ = strict inclusion

= 2-way conversion

algorithm
“Chomsky Hierarchy”

Classifying Problems by Resources

• What is the smallest size circuit (fewest gates) to
add two binary numbers?

• What is the smallest depth circuit for binary
addition? (low depth ⇒ fast)

• can a FSA be used to recognize all binary strings
with = numbers of 1s & 0s? Must a stronger model be
used?used?

• How quickly can we determine if strings of length n

are in TSL?

• How much space is needed to decide if boolean
formulae of length n are satisfiable?

Relationships between problems

Reduction

• the most powerful technique available to compare the
complexity of two problems

• reducing the solution of problem A to the solution
of problem B ⇒ A is no harder than B (written A ≤
B)

The translation procedure should be no harder than the � The translation procedure should be no harder than the
complexity of A.

Example: squaring ≤ multiplication: suppose we have
an algorithm mult(x,y) that will multiply two
integers. Then square(x) = mult(x,x) [trivial
reduction]

Relationships between problems

Reduction
• the most powerful technique available to compare the

complexity of two problems
• reducing the solution of problem A to the solution

of problem B ⇒ A is no harder than B (written A ≤
B)
� The translation procedure should be no harder than the

complexity of A. complexity of A.

Example: 2-PARTITION ≤ MAKESPAN SCHEDULING

2-PARTITION: Given a set H of natural numbers, is there a subset
H’ of H such that Σa∈(H-H’) a = Σa∈H’a’ ?

MAKESPAN SCHEDULING: Given n processor and m tasks with
execution time c1, c2, …, cm, find a shortest schedule of executing
these m tasks on this n processors.

Both problems are NP-complete!

Relationships between problems

Reduction

• the most powerful technique available to compare the
complexity of two problems

• reducing the solution of problem A to the solution
of problem B ⇒ A is no harder than B (written A ≤
B)

The translation procedure should be no harder than the

invert

matrix
A,B A*B

I

BI

AI

00

0

0

� The translation procedure should be no harder than the
complexity of A.

Example: matrix-mult ≤ matrix-inversion

−

−

I

BI

BAAI

00

0

*

embed pick

−

−

I

BI

BAAI

00

0

*

I

BI

AI

00

0

0

I

I

I

00

00

00

=

Obtaining Results

• Use definitions, theorems and lemmas, with proofs

• Proofs use construction, induction, reduction,
contradiction

� Construction: design an algorithm for a problem,
or to build a machine from a grammar, etc.

� Induction: a base case and an induction step
imply a conclusion about the general case. Main imply a conclusion about the general case. Main
tool for showing algorithms or constructions are
correct.

� Reduction: solve a new problem by using the
solution to an old problem + some additional
operations or transformations

� Contradiction: make an assumption, show that an
absurd conclusion follows; conclude the negation
of the assumption holds (“reductio ad absurdum”)

Class of all languages

}23mod|0{00*)0(3 == nn

Reg

}0|{ ≥nba nn

CF

�

�

}0|{ ≥ncba nnn

CS

�� L

?""answer toalgorithm Lx∈∃

Problem HaltingHL�

HL�

Summary: Theory of Computation
• Models of the computing process

� circuits

� finite state automata

� pushdown automata

� Turing machines

� capabilities and limitations

• Notion of ``effectively computable procedure’’• Notion of ``effectively computable procedure’’

� universality of the notion

� Church’s Thesis

� what is algorithmically computable

• Limitations of the algorithmic process
� unsolvability (undecidability) & reducibility

• Inherent complexity of computational problems
� upper and lower bounds: classification by resource use

� NP-completeness & reducibility

