Theory of Computation and Formal Languages

Jeena George Department of Computer Application

Theory of Computation

Lecture 01

Introduction

Theory of Computation: areas

- Formal Language Theory
 - language = set of sentences (strings)
 - grammar = rules for generating strings
 - production/deduction systems
 - capabilities & limitations
 - application: programming language specification
- Automata Theory (Abstract Machines)
 - models for the computing process with various resources
 - characterize ``computable"
 - capabilities & limitations
 - application: parsing algorithms
- Complexity Theory
 - inherent difficulty of problems (upper and lower bounds)
 - time/space resources
 - intractable or unsolvable problems
 - application: algorithm design

Major Themes

- Study models for
 - problems
 - machines
 - languages
- Classify
 - machines by their use of memory
 - grammars and languages by type
 - languages by class hierarchies
 - problems by their use of resources (time, space, ...)
- Develop relationships between models
 - *reduce* solution of one problem to solution of another
 - simulate one machine by another
 - *characterize* grammar type by machine recognizer

Describing Problems

- Problems described by functions
 - functions assign ouputs to inputs
 - described by tables, formulae, circuits, math logic, algorithms

Example: TRAVELLING SALESPERSON Problem

Input: n(n-1)/2 distances between *n cities*

Output: order to visit cities that gives *shortest tour* (or length of tour)

- Problems described by languages
 - yes/no'' problems or decision problems
 - a language represents a *problem or question*
 - input strings in the language: answer is ``yes''; else ``no"

Example: HALTING Problem

Input: a string $w \in \operatorname{Ard}(M)$ Juring Machine MOutput: ``yes" if $(e, w) \in ; \hat{L}_{H}$ otherwise

• $\Phi_H = \Phi_H = \Phi_e$ halts on input w

where

Types of Machines

- Finite-state automaton (FSA)
 - bounded number of memory states
 - step: input, current state determines next state & output

Mod 3 counter state/ouput (Moore) machine

models programs with a *finite* number of *bounded* registers
 reducible to 0 registers

- Pushdown Automaton (PDA)
 - finite control and a single *unbounded* stack

- Pushdown Automaton (PDA)
 - finite control and a single *unbounded* stack

- Pushdown Automaton (PDA)
 - finite control and a single *unbounded* stack

- Pushdown Automaton (PDA)
 - finite control and a single *unbounded* stack

• Random access machine (RAM)

- finite program and an *unbounded, addressable* random access memory of ``registers"
- models general programs
 - unbounded # of bounded registers

- Turing Machine (TM)
 - finite control & tape of *bounded cells* unbounded in # to R
 - current state, cell scanned determine next state & overprint symbol
 - control writes over symbol in cell and moves head 1 cell L or R
 - models simple ``sequential'' memory; no addressability

How Machines are Used

- To specify *functions or sets*
 - Transducer maps string to string

Acceptor - ``recognizes" or ``accepts'' a set of strings

M accepts strings which cause it to enter a final state
Generator - ``generates" a set of strings

• M generates all values generated during computation

How Machines are Used

The equivalence between acceptor and generator

• Using an acceptor to implement a generator


```
#include ``acceptor.h"
generator() {
   for w<sub>i</sub>=w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub>, ..., do if accept(w<sub>i</sub>)
print(w<sub>i</sub>);
}
```

How Machines are Used

The equivalence between acceptor and generator

• Using a generator to implement an acceptor


```
#include ``generator.h"
acceptor(w) {
    while (w<sub>i</sub>=generator) ≠ null, do
        if w=w<sub>i</sub>, return ``yes"; else if w<w<sub>i</sub>,
    return ``no";
}
```

Types of Language

• A *language* is a set of strings over an alphabet

 $L_{1} = \{ a^{n} b^{n} c^{n} | n \ge 0 \}$ $L_{2} = \{ a^{i} b^{j} c^{k} | i+j=k \& i,j,k \ge 0 \}$

• Grammars are rules for generating a set of strings $G_1: S \rightarrow aBSc | abc | \varepsilon$ $S \Rightarrow aBSc \Rightarrow aBaBScc \Rightarrow aBaBabccc \Rightarrow aBaaBbccc \Rightarrow aaBaBbccc$

 $Ba \rightarrow aB \qquad \Rightarrow aaBabbccc \Rightarrow aaaBbbccc \Rightarrow aaabbbccc$ $Bb \rightarrow bb$

 $G_2: S \to aSc | T | \varepsilon$ $T \to bTc | \varepsilon$

• Machines can *accept* languages (sets)

Types of Language (cont.)

 Languages can represent complex ``problems"
 Example: Traveling Salesperson Language (TSL) strings describe *instances* of TSP having tours of length ≤ k here is one string in TSL when n=4:

 $(d_{12}, d_{13}, d_{14}, d_{23}, d_{24}, d_{34}; k) = (4, 3, 2, 3, 2, 3; 11)$

Types of Language (cont.)

The equivalence of language recogintion and problem solving

- An algorithm is known that will accept length n strings in TSL in time exponential in n -- BUT none known for polynomial time
- TSL is an NP-*complete* language:
 - NP is an acronym for *recognizable in nondeterministic polynomial time*
 - NP-complete languages are ``maximally hard" among all in NP
 - the best ${\bf known}$ recognition algorithms need time exponential in ${\it n}$
 - all NP-complete languages either require exponenital time OR can be done efficiently in poly-time, but we do not (yet) know which!
 - we will use *reduction* to show that a language is NP-complete; major subject later on

Languages: Characterize Grammar by Machine

Language	Grammar	Automaton
Computably Enumerable type 0	<-TM→	
<pre>(c.e.) or Recursively det.)</pre>	(unrestricted)	(det. or non-
Enumerable (r.e.)	$\alpha \rightarrow \beta \Box \alpha \neq \epsilon$	
\cup	\cup	\cup
Context-Free (CFL)	type 2 \longleftrightarrow $A \rightarrow \beta$ CFG	<i>non</i> -det. PDA
\cup	\cup	\cup
Regular (Reg)	type 3 ↔	FSA
<u>`</u>	$A \rightarrow aB A \rightarrow a$	(det. or non-
U = strict inclusion → = 2-way conversion algorithm	right-linear	"Chomsky Hierarchy"

Classifying Problems by Resources

- What is the smallest *size* circuit (fewest gates) to add two binary numbers?
- What is the smallest *depth* circuit for binary addition? (low depth \Rightarrow fast)
- can a FSA be used to recognize all binary strings with = numbers of 1s & 0s? Must a stronger model be used?
- How quickly can we determine if strings of length *n* are in TSL?
- How much space is needed to decide if boolean formulae of length *n* are satisfiable?

Relationships between problems

Reduction

- the most powerful technique available to compare the complexity of two problems
- reducing the solution of problem A to the solution of problem $B \implies A \; is \; no \; harder \; than \; B$ (written $A \leq B$)
 - The translation procedure should be no harder than the complexity of A.
- Example: squaring \leq multiplication: suppose we have an algorithm mult(x,y) that will multiply two integers. Then square(x) = mult(x,x) [trivial reduction]

Relationships between problems

Reduction

- the most powerful technique available to compare the complexity of two problems
- reducing the solution of problem A to the solution of problem $B \implies A \ is \ no \ harder \ than \ B$ (written $A \le B$)
 - The translation procedure should be no harder than the complexity of A.

Example: *2-PARTITION* ≤ *MAKESPAN SCHEDULING*

- 2-PARTITION: Given a set H of natural numbers, is there a subset H' of H such that $\Sigma_{a \in (H-H')} a = \Sigma_{a \in H'} a'$?
- MAKESPAN SCHEDULING: Given n processor and m tasks with execution time $c_1, c_2, ..., c_m$, find a shortest schedule of executing these m tasks on this n processors.

Both problems are NP-complete!

Relationships between problems

Reduction

- the most powerful technique available to compare the complexity of two problems
- reducing the solution of problem A to the solution of problem $B \implies A \; is \; no \; harder \; than \; B$ (written $A \leq B$)
- The translation procedure should be no harder than the complexity of $\begin{bmatrix} A & B \\ 0 & I & B \end{bmatrix} = \begin{bmatrix} I & B \\ 0 & I & B \end{bmatrix} = \begin{bmatrix} I & B \\ 0 & I & B \end{bmatrix} = \begin{bmatrix} I & B \\ 0 & I & 0 \end{bmatrix}$ Example: matrix mulot $\leq matrix = matrix$

Obtaining Results

- Use definitions, theorems and lemmas, with proofs
- Proofs use construction, induction, reduction, contradiction
 - *Construction:* design an algorithm for a problem, or to build a machine from a grammar, etc.
 - Induction: a base case and an induction step imply a conclusion about the general case. Main tool for showing algorithms or constructions are correct.
 - *Reduction:* solve a new problem by using the solution to an old problem + some additional operations or transformations
 - Contradiction: make an assumption, show that an absurd conclusion follows; conclude the negation of the assumption holds ("reductio ad absurdum")

Summary: Theory of Computation

- Models of the computing process
 - circuits
 - finite state automata
 - pushdown automata
 - Turing machines
 - capabilities and limitations
- Notion of ``effectively computable procedure''
 - universality of the notion
 - Church's Thesis
 - what is algorithmically computable
- Limitations of the algorithmic process
 - unsolvability (undecidability) & reducibility
- Inherent complexity of computational problems
 - upper and lower bounds: classification by resource use
 - NP-completeness & reducibility