Theory of Computation
and Formal Languages

Jeena George

Department of Computer Application

Theory of Computation

Lecture 01

Introduction

Theory of Computation: areas

« Formal Language Theory
= language = set of sentences (strings)
= grammar = rules for generating strings
= production/deduction systems
= capabilities & limitations
= application: programming language specification
e Automata Theory (Abstract Machines)
= models for the computing process with various resources
= characterize computable”
= capabilities & limitations
= application: parsing algorithms
e« Complexity Theory
= inherent difficulty of problems (upper and lower bounds)
= time/space resources
= intractable or unsolvable problems

= application: algorithm design

Major Themes

e Study models for
= problems
= machines

« languages

e« Classify
= machines by their use of memory
= grammars and languages by type

= languages by class hierarchies
=« problems by their use of resources (time, space, ..)

e« Develop relationships between models
s reduce solution of one problem to solution of another
s simulate one machine by another

s characterize grammar type by machine recognizer

Describing Problems

e Problems described by functions

= functions assign ouputs to inputs

= described by tables, formulae, circuits, math logic, algorithms

Example: TRAVELLING SALESPERSON Problem

Input: n(n—1)/2 distances between n cities

Output: order to visit cities that gives shortest tour (or length of

tour)

e Problems described by languages
= vyes/no’’ problems or decision problems

= a language represents a problem or question
= input strings 7n the language: answer is yes’’: else

Example: HALTING Problem
Input: a string w eadd(# Yuring Machine M
Output: yes” if (e,w) e;L,no” otherwise

+ dpizal@w)o Taskitng Machin@d/ , halts on input w}

where

X ‘]70”

Types of Machines

e LLogic circuit
= memoryless; values combined using gates

Circuit size = b

Circuit depth = 3

Types of Machines (cont.)

« Finite—-state automaton (FSA)

s bounded number of memory states

s step: input, current state determines next state & output

Mod 3 counter
state/ouput (Moore) machine

e models programs with a f7inite number of bounded registers
ereducible to 0 registers

Tvpes of Machines (cont.
e Pushdown Automaton (PDA)

« finite control and a single wunbounded stack

a, A/AA
L={a"b"#:n>1} :a, $/A$f ? f Eb’ Ae
b’ A/S #7 $/8

= models finite program + one unbounded stack of bounded register

<= top 4

—pHh —

Tvpes of Machines (cont.
e Pushdown Automaton (PDA)

« finite control and a single wunbounded stack

a, A/AA
L={a"b" #:n>1} :a, $/A$f ? f Eb’ Ae
b’ A/S #7 $/8

= models finite program + one unbounded stack of bounded register

a

|

A A

A A A
I I I

accepting

Tvpes of Machines (cont.
e Pushdown Automaton (PDA)

« finite control and a single wunbounded stack

a, A/AA
L={a"b" #:n>1} :a, $/A$f ? f Eb’ Ae
b’ A/S #7 $/8

= models finite program + one unbounded stack of bounded register

>
a f b b
A A A ? rejectin
A A A A A g
$ 119 $ $1 18] |9 $

Tvpes of Machines (cont.
e Pushdown Automaton (PDA)

« finite control and a single wunbounded stack

a, A/AA
L={a"b"#:n>1} :a, $/A$f ? f Eb’ Ae
b’ A/S #7 $/8

= models finite program + one unbounded stack of bounded register

>
afb H
A A A . .
> rejectin
A A A A A : g
$ 1193 $ $1 1% 19

Tvpes of Machines (cont.

o Random access machine (RAM)

« finite program and an wunbounded, addressable

~ =~

random access memory of registers”

« models general programs

o unbounded # of bounded registers

R, < R, + R,
L,:JMPZ R, L,
INC R,
DEC R,
JMP L,

L, :CONTINUE

Example:

O = DN W

T

es of Machines (cont.

e Turing Machine (TM)

finite control & tape of bounded cells unbounded in # to R

current state, cell scanned determine next state &
overprint symbol

control writes over symbol in cell and moves head 1 cell L
or R

models simple sequential’’ memory; no addressability

b H e o o

A

f1>]ed amniint onf 1nformation (]n\ Nnar Cell

A 4

Finite—

state
control

How Machines are Used

e To specify functions or sets

s Transducer — maps string to string

w—— M —fw

~

=« Acceptor — recognizes” or

~

“accepts’’ a set of strings

=
v
=

—> no

s M accepts strings which cause it to enter a final state

= Generator — generates” a set of strings

M — f(w)

» M generates all values generated during computation

How Machines are Used

The equivalence between acceptor and generator

« Using an acceptor to implement a generator

for w;=wg,, Wy, Wy, Wy, ..., dO

A

W

v

v

print w.

* Acceptor |ves

\ 4

no

#include “acceptor.h”

generator () {

for w,=wgy, Wy, Wy, Ws, ..., do if accept (w;)
print (w;) ;

)

How Machines are Used

The equivalence between acceptor and generator

Using a generator to implement an acceptor

<
«

v

Generator
one w. at at time

WoW;

W=W,

~

wlw;

seturn “yes’

»return “'no”’

#include “generator.h”

acceptor (w) {

)

while (w,=generator) # null, do

1f w=w;, return “yes”; else if w<w;,
return “no”;

lTypes of Language

e A Janguage is a set of strings over an alphabet

L ={db "|n=0}
L={db ¢|i+j=k &ij, k>0}

e Grammars are rules for generating a set of strings

G, :S > aBSc|abc| & S = aBSc= aBaBScc= aBaBabccc= aBaaBbccc= aaBaBbccc
Ba— aB = aaBabbccc= aaaBbbccc=> aaabbbccc
Bb— bb

G,: S—>aSc|T|¢
T —>blc|e

« Machines can accept languages (sets)

Types of Language (cont.)

~

e Languages can represent complex problems”

Example: Traveling Salesperson Language (TSL)
strings describe instances of TSP having tours of length < &k

here is one string in TSL when n=4:

(d,,d,dy,,dy,dyy,dy 5 k)=(43,2,323; 11)

cities visited in order
1.4,2,.3,1 = tour distance = 10

Types of Language (cont.)

The equivalence of language recogintion and problem solving
e An algorithm is known that will accept length »n strings in

TSL in time exponential/ in n— BUT none known for

polynomial time

e TSL is an NP-comp/ete language:

NP is an acronym for recognizable in nondeterministic
polynomial time

~

NP-complete languages are maximally hard” among all in NP

the best known recognition algorithms need time exponential in
n

all NP-complete languages either require exponenital time OR

can be done efficiently in poly—time, but we do not (yet) know
which!

we will use reduction to show that a language is NP—-complete;
major subject later on

Languages: Characterize Grammar by Machine

Language Grammar Automaton
Computably Enumerable type 0O L
(c.e.) or Recursively (unrestricted) (det. or non-
det.)
Enumerable (r.e.) a—>B Ho # ¢
U U U
Context—-Free (CFL) type 2 > ondet. PDA
A—pf
CEG
U U U
Regular (Reg) type 3 <«——» FSA

K.) = strict inclusion

G—p = 27WAY coONversion
algorithm

A—>aB A —a (det. or non-—

right—-linear
“Chomsky Hierarchy”

Classifying Problems by Resources

What is the smallest size circuit (fewest gates) to
add two binary numbers?

What is the smallest depth circuit for binary
addition? (low depth = fast)

can a FSA be used to recognize all binary strings
with = numbers of 1s & 0s? Must a stronger model be
used?

How quickly can we determine if strings of length n
are in TSL?

How much space is needed to decide if boolean
formulae of length nare satisfiable?

Relationships between problems

Reduction
« the most powerful technique available to compare the
complexity of two problems

e reducing the solution of problem A4 to the solution
of problem B = A is no harder than B (written A <

B)

The translation procedure should be no harder than the
complexity of A.

Example: squaring < multiplication: suppose we have
an algorithm mult(x,y) that will multiply two
Integers. Then square(x) = mult(x,x) [trivial
reduction]

Relationships between problems

Reduction

« the most powerful technique available to compare the
complexity of two problems

 reducing the solution of problem A4 to the solution
of problem B = A is no harder than B (written A <

B)
s [he translation procedure should be no harder than the
complexity of A.

Example: 2-PARTITION £ MAKESPAN SCHEDULING
2-PARTITION: Given a set H of natural numbers, is there a subset
H’ of H such that 2, g ;pya =2, pa’?

MAKESPAN SCHEDULING: Given n processor and m tasks with
execution time c,;, 5, ..., C,, find a shortest schedule of executing

these m tasks on this n processors.
Both problems are NP-complete!

Relationships between problems

Reduction

« the most powerful technique available to compare the
complexity of two problems

e reducing the solution of problem A4 to the solution
of problem B = A is no harder than B (written A <

B)
» The 1]”311;156 Lipp progeguire sh 51]6]] e no harder than the
compig g6 1 s = o1 o
Example:ﬂma¢rj;ﬂmkm ﬁéI;tril;ﬂnfLrsion
i | {1 —A A*B}
0 I -B

0 0 [

A,B —»I@_ _ > 1nve1.”t A*B
matrix

S O~
S ~
~ 3 o

Obtaining Results

e Use definitions, theorems and lemmas, with proofs

e Proofs use construction, induction, reduction,
contradiction

s Construction: design an algorithm for a problemn,
or to build a machine from a grammar, etc.

s /nduction: a base case and an induction step
imply a conclusion about the general case. Main
tool for showing algorithms or constructions are
correct.

s Keduction: solve a new problem by using the
solution to an old problem + some additional
operations or transformations

s« Contradiction: make an assumption, show that an

absurd conclusion follows; conclude the negation
of the assumption holds (“reductio ad absurdum”)

Clasg of all lenguages—

—

Reg

e (0°)*00={0"|nmod3=2}

e {a"b"|n=>0}

Summary: Theory of Computation

e Models of the computing process
= clrcuits
= finite state automata
= pushdown automata
= Turing machines
= capabilities and limitations
e« Notion of effectively computable procedure’ ’

= universality of the notion
s Church’s Thesis

= what 1s algorithmically computable

e Limitations of the algorithmic process
= unsolvability (undecidability) & reducibility

« Inherent complexity of computational problems
= upper and lower bounds: classification by resource use

= NP-completeness & reducibility

