SUBJECT: MICROPROCESSOR ARCHITECTURE AND PROGRAMMING TOPIC : FUNCTIONAL BLOCK DIAGRAM OF 8085 NAME OF TEACHER: SIMNA V J ACADEMIC YEAR: 2020-2021

TOPIC : FUNCTIONAL BLOCK DIAGRAM 8085

Functional block diagram of 8085

The architecture consists of following functional blocks

1. Registers

- 2. Arithmetic and logic unit
- 3. Instruction decoder and machine cycle encoder
- 4. Address buffer

- 5. Address/data buffer
- 6. Incrementer/decrementer address latch
- 7. Interrupt control
- 8. Serial I/o control
- 9. Timing and control circuitry

Functional Block Diagram of 8085 Microprocessor

Fig: Functional Block Diagram of 8085 Microprocessor

1. Registers

Registers are classified as

General purpose registers(GPR)

Special purpose registers
 Accumalator
 Flag registers
 Instruction register

16 bit registers

 Program counter(PC)
 Stack pointer(SP)

 Temporary register

 Temporary data registers
 W and Z registers

General purpose registers

- It has six 8 bit GPR which is also called scratchpad registers because user can store data in them
- These registers are labeled as B,C,D,E,H and
- They can be used individually to store 8 bit data and in pairs like BC, DE and HL to store 16 bit data

Special purpose registers

Accumalator

Intermediate arithmetic and logic calculations are stored here

Instruction register

it hold the instruction code of instruction which is being decode and executed

Flag register

- It contain five individual flip flops that serve as status flags
- Sign flag: in a given byte, I f D7 is one then sign flag is set and number viewed as negtive, if zero then positive

- Zero flag: zero flag is set to 1, if ALU result in zero operation and reset to zero if it is nonzero
- Auxilliary carry flag: it is set when a carry is generated
- Parity flag: after ALU operation, if the result has even number of 1s then flag is set. if it is odd then reset

16 bit register

Program counter

It is a 16 bit register and hold address of next instruction to be executed

Stack pointer

It hold the address of top element in a stack

Temporary registers

- Temporary data registers
- ALU has 2 inputs. one input supplied by accumalator and other from temporary data register. but programmer can't access this register
- W and Z Register

 These are 2 types of temporary registers which hold 8 bit data

2. ALU

It includes accumalator ,temporary
 register, arithmetic and logic circuit and 5
 status flags

3. Instruction decoder

 It decodes the information present in instruction register

4. Address buffer

 This is 8 bit unidirectional buffer used to transfer high order buffer

5.Address/data buffer

 This is 8 bit bidirectional buffer. it is used to drive multiplexed address/data bus.ie, low order address bus (A7-Ao) and data bus (D7-Do)

6.Incrementer/decrementer address latch

 This is 16 bit register used to increment ot decrement the contents of program counter or stack pointer

7.Interrupt control

It control interrupt during a process

8.serial I/O control

 It control serial data communication by using SID and SOD

9.Timing and control unit

It provides timing and control signals to microprocessor to perform operations