
SUBJECT:JAVA PROGRAMMING

SAVIYA VARGHESE
DEPT OF BCA

2020-21



1.1 Multi-threaded and Multitasking

� Java is a multi-threaded programming language which means

we can develop multi-threaded program using Java.

� A multi-threaded program contains two or more parts that can

run concurrently and each part can handle a different task at

the same time making optimal use of the available resources

specially when your computer has multiple CPUs.

� Multithreading in Java is a process of executing multiple 

threads simultaneously.

� A thread is a lightweight sub-process, the smallest unit of 

processing. Multiprocessing and multithreading, both are used 

to achieve multitasking.

�



Multitasking 

� By definition, multitasking is when multiple processes share

common processing resources such as a CPU.

� Multi-threading extends the idea of multitasking into

applications where you can subdivide specific operations within

a single application into individual threads.

� Each of the threads can run in parallel.

� The OS divides processing time not only among different

applications, but also among each thread within an application.



1) It doesn't block the user because threads are independent

and you can perform multiple operations at the same time.

2) You can perform many operations together, so it saves

time.

3) Threads are independent, so it doesn't affect other threads if

an exception occurs in a single thread.



� A thread goes through various stages in its life cycle.

� For example, a thread is born, started, runs, and then dies.



� New − A new thread begins its life cycle in the new state. It 

remains in this state until the program starts the thread. It is 

also referred to as a born thread.

� Runnable − After a newly born thread is started, the thread 

becomes runnable. A thread in this state is considered to be 

executing its task.

� Waiting − Sometimes, a thread transitions to the waiting state 

while the thread waits for another thread to perform a task. A 

thread transitions back to the runnable state only when another 

thread signals the waiting thread to continue executing.



Timed Waiting − A runnable thread can enter the timed waiting

state for a specified interval of time. A thread in this state

transitions back to the runnable state when that time interval

expires or when the event it is waiting for occurs.

Terminated (Dead) − A runnable thread enters the terminated

state when it completes its task or otherwise terminates.


