
BCS6B13: Fundamentals of
Operating Systems

 An operating system executes a variety
of programs:
◦ Batch system – jobs
◦ Time-shared systems – user programs or tasks

 uses the terms job and process almost
interchangeably

 Process – a program in execution

 Multiple parts
◦ The program code, also called text section
◦ Current activity including program counter, processor

registers
◦ Stack containing temporary data

 Function parameters, return addresses, local variables
◦ Data section containing global variables
◦ Heap containing memory dynamically allocated during run ◦ Heap containing memory dynamically allocated during run

time
 Program is passive entity, process is active

◦ Program becomes process when executable file loaded into
memory

 Execution of program started via GUI mouse
clicks, command line entry of its name, etc

 One program can be several processes
◦ Consider multiple users executing the same program

 As a process executes, it changes state
◦ new: The process is being created
◦ running: Instructions are being

executed
◦ waiting: The process is waiting for ◦ waiting: The process is waiting for

some event to occur
◦ ready: The process is waiting to be

assigned to a processor
◦ terminated: The process has finished

execution

 Each Process is represented in the operating system by a
Process Control Block (PCB) also called Task control Block.

It contains Information associated with each process
1. Process state
2. Program counter
3. CPU registers3. CPU registers
4. CPU scheduling information (process priority,pointer to scheduling

queue etc…)

5. Memory-management information (base and limit reg value,
page table etc..)

6. Accounting information (amount of CPU and real time used,time limit, prosess
no etc…)

7. I/O status information (list of IO devices allocated, open files etc..)

 Maximize CPU use, quickly switch processes
onto CPU for time sharing

 Process scheduler selects among available
processes for next execution on CPU

 Maintains scheduling queues of processes Maintains scheduling queues of processes
◦ Job queue – set of all processes in the system
◦ Ready queue – set of all processes residing in main memory,

ready and waiting to execute (linked list). Ready queue
contains pointer to the first and final PCBs in the list.

◦ Device queues – set of processes waiting for an I/O device
◦ Processes migrate among the various queues

 Long-term scheduler (or job scheduler) –
selects which processes should be brought
into memory for execution.

 Short-term scheduler (or CPU scheduler) – Short-term scheduler (or CPU scheduler) –
selects which process should be executed
next and allocates CPU
◦ Sometimes the only scheduler in a system

 Short-term scheduler is invoked very frequently
(milliseconds) (must be fast)

 Long-term scheduler is invoked very infrequently
(seconds, minutes) (may be slow)

 The long-term scheduler controls the degree of
multiprogramming
Long term scheduler is invoked when a process leaves the Long term scheduler is invoked when a process leaves the
system

 Processes can be described as either:
◦ I/O-bound process – spends more time doing I/O than

computations
◦ CPU-bound process – spends more time doing

computations
The long term scheduler should select a good process mix of IO bound and CPU
bound processes

It removes processes from memory and thus
reduces the degree of multi programming

 When CPU switches to another process, the
system must save the state of the old
process and load the saved state for the new
process via a context switch.

 Context of a process represented in the PCB
Context-switch time is overhead; the system Context-switch time is overhead; the system
does no useful work while switching
◦ The more complex the OS and the PCB -> longer the

context switch
 Time dependent on hardware support

◦ Some hardware provides multiple sets of registers per CPU
-> multiple contexts loaded at once

 Parent process create children processes, which,
in turn create other processes, forming a tree of
processes

 Generally, process identified and managed via a
process identifier (pid)

 Possibilities in Resource sharing Possibilities in Resource sharing
◦ Parent and children share all resources
◦ Children share subset of parent’s resources
◦ Parent and child share partition the resources
◦ Share resources among some of the processes.

 Possibilities in Execution
◦ Parent and children execute concurrently (asynchronous

Process Creation)
◦ Parent waits until children terminate (synchronous Process

Creation)

 Possibilities in Address space
◦ Child duplicate of parent
◦ Child has a program loaded into it

 Windows – CreateProcess() system call
 UNIX UNIX

◦ fork system call creates new process in same
address space

◦ execlp system call used after a fork to replace
the process’ memory space with a new program

The task of creating a new process on the request of
some other process is called Process Spawning

#include <sys/types.h>
#include <studio.h>
#include <unistd.h>

int main()

{

int pid;

pid = fork(); /* fork another process */

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

return 1;return 1;

}

else if (pid == 0) { /* child process */

execlp ("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child */

wait (NULL);

printf ("Child Complete");

}

return 0;

}

 Process executes last statement and asks the operating
system to delete it (exit)
◦ Output data from child to parent (via wait)

◦ Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes
(abort)(abort)
◦ Child has exceeded allocated resources

◦ Task assigned to child is no longer required

◦ If parent is exiting

 Some operating system do not allow child to continue if its parent
terminates

 All children terminated if parent terminates- cascading termination

 Processes within a system may be
independent or cooperating

 Cooperating process can affect or be affected
by other processes, including sharing data

 Reasons for cooperating processes: Reasons for cooperating processes:
◦ Information sharing (many interested in same data)

◦ Computation speedup(a particular task to run faster divide
to sub tasks and execute in parallel in multiple parallel
components)

◦ Modularity (to construct system in modular fashion)

◦ Convenience

 Independent process cannot affect or be
affected by the execution of another
process

 Cooperating process can affect or be
affected by the execution of another
processprocess

 Cooperating Processes communicate
through

 Inter process communication (IPC)
◦ Shared Memory (Share same address space)◦ Shared Memory

◦ Message Passing (when processes is in different computers

in a network)

(Share same address space)

 Paradigm for cooperating processes, producer
process produces information that is
consumed by a consumer process
◦ unbounded-buffer places no practical limit on the

size of the buffer
◦ bounded-buffer assumes that there is a fixed buffer

 Shared Memory

◦ bounded-buffer assumes that there is a fixed buffer
size

 Buffer either provided by Operating
system through IPC or by the application
Programmer.

 Shared data
#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;int in = 0;
int out = 0;

 Circular array
 In points to next free position.
 Out points to first full position.
 Next location = (in+1)%buffersize
 Buffer empty : in ==out
 Buffer full : (in+1) % buffersize==out

while (true) {
/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count)
== out)

; /* do nothing -- no free buffers */; /* do nothing -- no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

}

while (true) {
while (in == out)

; // do nothing -- nothing to
consume

// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;

return item;
}

 Mechanism for processes to communicate and
to synchronize their actions

 Message system – processes communicate
with each other without resorting to shared with each other without resorting to shared
variables

 IPC facility provides two operations:
◦ send(message) – message size fixed or variable

◦ receive(message)

 If P and Q wish to communicate, they need to: If P and Q wish to communicate, they need to:
◦ establish a communication link between them

◦ exchange messages via send/receive

 Implementation of communication link
◦ physical (e.g., shared memory, hardware bus)

◦ logical (e.g., logical properties)

1. Direct or indirect communication

2. Symmetric or asymmetric communication

3. Automatic or explicit buffering

4. Send by copy or send by reference

5. Fixed size or variable sized message.

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

 Only sender names the recipient

 send (P, message) – send a message to process P

 receive(id, message) – receive message from any process , id set to

the name of the process.

Disadvantage, Direct :Change in name results in examining all process definitions

 Messages are directed and received from mailboxes (also referred to
as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

M

M

M

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Depends on the system scheme…
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive operation
 Allow the system to select arbitrarily the receiver. Sender is no

tified who the receiver was.

 Owned by Operating System or by process

 If owned by Process mailbox terminates

along with process.

 If owned by OS mailbox not attached to any

process.

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous
 Blocking send has the sender block until the message is rece

ived
 Blocking receive has the receiver block until a message is av

ailableailable

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message and co

ntinue
 Non-blocking receive has the receiver receive a valid messa

ge or null

Different combinations possible
If both send and receive are blocking, we have a rendezvous

Rendezvous: meet at an agreed time and place

 Queue of messages attached to the link; implemented in one of three w
ays

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

Case 2 and 3 known to be automatic buffering

 Sockets

 Remote Procedure Calls

 Remote Method Invocation

 Sockets
 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at start of
message packet to differentiate network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard services

 When client initiates a request , it is assigned a port number by the
host computer which is greater than 1024

 Three types of sockets
 Connection-oriented (TCP)
 Connectionless (UDP)
 MulticastSocket class– data can be sent to multiple recipients

 Communication using sockets common and efficient, but low level

form of communication.

 Unstructured data.

 It is the responsibility of the client server application to impose It is the responsibility of the client server application to impose

structure on data.

 Alternative…….Higher level methods of communication

◦ RPC

◦ RMI

 Remote procedure call (RPC) abstracts procedure
calls between processes on networked systems

 Messages are well structured.

 Stubs – client-side proxy for the actual procedure
on the server

 The client-side stub locates the server and
marshalls the parameters

 The server-side stub receives this message,
unpacks the marshalled parameters, and performs
the procedure on the server.

 Data representation handled via External Data
Representation (XDL) format to account for
different architectures

Marshalling involves converting machine Marshalling involves converting machine
dependent data to XDR

 Remote communication has more failure scenarios
than local
◦ Messages can be delivered exactly once rather

than at most once

 Binding: procedure calls name is replaced by

the memory address of the procedure call.

 Binding in RPC?

◦ Predetermined binding, fixed port address.

◦ Matchmaker technique

Matchmaker Matchmaker
Technique

 Java feature similar to RPC

 Invoke method on a remote object.

 Remote Object: Objects in different JVM

 RPC support procedural programming

 RMI support object oriented programming
◦ RMI can pass objects are parameters

 If the marshaled parameters are local or non
remote they are passed by copy using a
technique called object serialization.

If the parameters are remote they are passed If the parameters are remote they are passed
by reference.

