Subject: Computer graphics
Topic : Reflection example problems
Name of Teacher: Simna v j
Academic year: 2020-2021

PRACTICE PROBLEMS BASED ON 2D REFLECTION

Reflection

- Reflection is a kind of rotation where the angle of rotation is 180 degree.
- The reflected object is always formed on the other side of mirror.
- The size of reflected object is same as the size of original object.

Reflection On X-Axis:

This reflection is achieved by using the following reflection equations-

- $X_{\text {new }}=X_{\text {old }}$
- $Y_{\text {new }}=-Y_{\text {old }}$

Reflection On Y-Axis:

- This reflection is achieved by using the following reflection equations-
- $X_{\text {new }}=-X_{\text {old }}$
- $Y_{\text {new }}=Y_{\text {old }}$

Problem-01:

- Given a triangle with coordinate points $A(3,4)$, $B(6,4), C(5,6)$. Apply the reflection on the X axis and obtain the new coordinates of the object.

Solution-

For Coordinates A(3, 4)

Applying the reflection equations, we have-
$X_{\text {new }}=X_{\text {old }}=3$
$Y_{\text {new }}=-Y_{\text {old }}=-4$

New coordinates of A after reflection $=(3,-4)$.

For Coordinates B(6, 4)

Applying the reflection equations, we have-
$X_{\text {new }}=X_{\text {old }}=6$
$Y_{\text {new }}=-Y_{\text {old }}=-4$

New coordinates of B after reflection $=(6,-4)$.

For Coordinates C(5, 6)

Applying the reflection equations, we have-
$X_{\text {new }}=X_{\text {old }}=5$
$Y_{\text {new }}=-Y_{\text {old }}=-6$

New coordinates of C after reflection $=(5,-6)$.

New coordinates of the triangle after reflection =

$$
A(3,-4), B(6,-4), C(5,-6) .
$$

Problem :2

- Given a triangle with coordinate points $A(3,4)$, $B(6,4), C(5,6)$. Apply the reflection on the Y axis and obtain the new coordinates of the object.

Given-

- Old corner coordinates of the triangle =

$$
A(3,4), B(6,4), C(5,6)
$$

- Reflection has to be taken on the Y axis

For Coordinates A(3, 4)

Let the new coordinates of corner A after reflection $=$ ($X_{\text {new }}, Y_{\text {new }}$).

Applying the reflection equations, we have-
$X_{\text {new }}=-X_{\text {old }}=-3$
$Y_{\text {new }}=Y_{\text {old }}=4$

New coordinates of corner A after reflection $=(-3,4)$.

For Coordinates B(6, 4)

Applying the reflection equations, we have-
$X_{\text {new }}=-X_{\text {old }}=-6$
$Y_{\text {new }}=Y_{\text {old }}=4$

New coordinates of corner B after reflection $=(-6,4)$.

For Coordinates C(5, 6)

Applying the reflection equations, we have-
$X_{\text {new }}=-X_{\text {old }}=-5$
$Y_{\text {new }}=Y_{\text {old }}=6$

New coordinates of corner C after reflection $=(-5,6)$.

