
Fragments

Jestin James M
Assistant Professor, Dept of Computer Science
Little Flower College, Guruvayoor

Fragments

• Introduced In Android 3.0
• One way to think of a fragment is as a sub-

activity
• A fragment can have a view hierarchy • A fragment can have a view hierarchy

associated with it
• it has a lifecycle much like an activity’s

lifecycle
• “If only I could put multiple activities together

on a tablet’s screen at the same time,”

When to Use Fragments

• you can reuse a chunk of user interface and
functionality across devices and screen sizes.

• you can have a list and a detail view of the
selected item on screen at the same time.selected item on screen at the same time.

• This is easy to picture in a landscape
orientation with the list on the left and the
details on the right

• But what if the user rotates the device to
portrait mode

When to Use Fragments

• list to be in the top portion of the screen and
the details in the bottom portion

When to Use Fragments

• ach fragment will have its own layout that can be
reused across many configurations.

• imagine that the user interface has changed
within the same activity, and the user wants to go
back a step, or two, or threeback a step, or two, or three

• activity, pressing the Back button will take the
user out of the activity entirely

• With fragments, the Back button can step
backward through a stack of fragments while
staying inside the current activity

The Structure of a Fragment

• A fragment can have a view hierarchy to
engage with a user

• any other view hierarchy in that it can be
created (inflated) from an XML layout created (inflated) from an XML layout
specification or created in code

• everything you know about views applies to
fragments as well

The Structure of a Fragment

• Similar to an activity, a fragment can be saved
and later restored automatically by the system

• When the system restores a fragment, it calls
the default constructor (with no arguments) the default constructor (with no arguments)

• and then restores this bundle of arguments to
the newly created fragment

• An activity can have multiple fragments in play
at one time

The Structure of a Fragment

• if a fragment has been switched out with
another fragment,

• the fragment-switching transaction can be
saved on a back stack. saved on a back stack.

• The back stack is managed by the fragment
manager tied to the activity.

• The back stack is how the Back button
behavior is managed

A Fragment’s Lifecycle

A Fragment’s Lifecycle

1. onAttach(Activity) called once the fragment is
associated with its activity.

2. onCreate(Bundle) called to do initial creation
of the fragmentof the fragment

3. onCreateView creates and returns the view
hierarchy associated with the fragment.

4. onActivityCreated tells the fragment that its
activity has completed its own Activity
onCreate().

A Fragment’s Lifecycle

5. onStart() makes the fragment visible to the
user (based on its containing activity being
started

6. onResume() makes the fragment begin 6. onResume() makes the fragment begin
interacting with the user

7. onPause() fragment is no longer interacting
with the user either because its activity is
being paused or a fragment operation is
modifying it in the activity.

8. onStop() fragment is no longer visible to the
user either because its activity is being stopped
or a fragment operation is modifying it in the
activity.

9. onDestroyView() allows the fragment to clean 9. onDestroyView() allows the fragment to clean
up resources associated with its View.

10. onDestroy() called to do final cleanup of the
fragment's state.

11.onDetach() called immediately prior to the
fragment no longer being associated with its
activity.

A Fragment’s Lifecycle

A Fragment’s Lifecycle

• At the very beginning, a fragment is instantiated.
• It now exists as an object in memory
• The first thing that is likely to happen is that

initialization arguments will be added to your
fragment objectfragment object

• When the system is restoring a fragment from a
saved state,

• the default constructor is invoked, followed by
the attachment of the initialization arguments
bundle

The onInflate() Callback

• If your fragment is defined by a <fragment>
tag in a layout that is being inflated

• your fragment’s onInflate() callback is called
• when an activity has called setContentView() • when an activity has called setContentView()

for its main layout
• This passes in the activity an AttributeSet with

the attributes from the <fragment> tag, and a
saved bundle.

The onAttach() Callback

• The onAttach() callback is invoked after your
fragment is associated with its activity.

• One thing to note is that the Fragment class
has a getActivity() methodhas a getActivity() method

• It will return the attached activity for your
fragment should you need it.

The onCreate() Callback

• similar to the activity’s onCreate(),
• you should not put code in here that relies on

the existence of the activity’s view hierarchy
• This callback gets the saved state bundle • This callback gets the saved state bundle

passed in, if there is one.
• Your fragment code is running on the UI

thread

The onCreateView() Callback

• you will return a view hierarchy for this
fragment.

• The arguments passed in to this callback
include a LayoutInflaterinclude a LayoutInflater

• The parent is provided so you can use it with
the inflate() method of the LayoutInflater.

The onActivityCreated() Callback

• This is called after the activity has completed
its onCreate() callback

• You can now trust that the activity’s view
hierarchy, including your own view hierarchyhierarchy, including your own view hierarchy

• It’s also where you can be sure that any other
fragment for this activity has been attached to
your activity.

The onStart() Callback

• Now your fragment is visible to the user
• you haven’t started interacting with the user

just yet
• This callback is tied to the activity’s onStart().• This callback is tied to the activity’s onStart().

The onResume() Callback

• The last callback before the user can interact
with your fragment is onResume()

• This callback is tied to the activity’s
onResume(). onResume().

• When this callback returns, the user is free to
interact with this fragment

• For example, if you have a camera preview in
your fragment, you would probably enable it
in the fragment’s onResume().

The onPause() Callback

• The first undo callback on a fragment is
onPause().

• This callback is tied to the activity’s onPause()
• you don’t want to be playing audio if the user • you don’t want to be playing audio if the user

is taking a phone call.

The onSaveInstanceState() Callback

• fragments have an opportunity to save state for
later reconstruction.

• This callback passes in a Bundle object to be used
as the container for whatever state information
you want to hang ontoyou want to hang onto

• To prevent memory problems, be careful about
what you save into this bundle

• Only save what you need.
• If you need to keep a reference to another

fragment, save its tag instead of trying to save the
other fragment.

The onStop() Callback

• This one is tied to the activity’s onStop()
• a purpose similar to an activity’s onStop().
• A fragment that has been stopped could go

straight back to the onStart() callback, which straight back to the onStart() callback, which
then leads to onResume().

The onDestroyView() Callback

• If your fragment is on its way to being killed
off or saved, the next callback in the undo
direction is onDestroyView()

• This will be called after the view hierarchy you • This will be called after the view hierarchy you
created on your onCreateView() callback

The onDestroy() Callback

• This is called when the fragment is no longer
in use.

• that it is still attached to the activity and is still
findable, but it can’t do much.findable, but it can’t do much.

The onDetach() Callback

• The final callback in a fragment’s lifecycle is
onDetach().

• Once this is invoked, the fragment is not tied
to its activity,to its activity,

• it does not have a view hierarchy anymore,
and all its resources should have been
released.

Using setRetainInstance()

• being re-created and therefore your fragments
will be coming back also.

• Therefore, fragment comes with a method
called setRetainInstance(),called setRetainInstance(),

