
Subject :

SoftwareEngineering

Topic: Unit testing

Name of the teacher :

LISNA THOMAS

Academic year:2020-21

Unit Testing - 1

Unit Testing - 2

Overview

• Testing Fundamentals

• Unit Test Planning

• Test Implementation

• Object Oriented Testing

• References

Unit Testing - 3

Terms for Quality Problems

• error - a mistake made by a human (in a

software development activity)

• defect (or fault) - the result of introducing

an error into a software artifact (SRS,

SDS, code, etc.)

• failure - a departure from the required

behavior for a system

Unit Testing - 4

Testing Fundamentals (1)

• Software Testing is a critical element of

Software Quality Assurance

• It represents the ultimate review of the

requirements specification, the design, and

the code.

• It is the most widely used method to insure

software quality.

• Many organizations spend 40-50% of

development time in testing.

Unit Testing - 5

Testing Fundamentals (2)

• Testing is concerned with establishing the

presence of program defects.

• Debugging is concerned with finding where

defects occur (in code, design or

requirements) and removing them. (fault

identification and removal)

• Even if the best review methods are used

(throughout the entire development of

software), testing is necessary.

Unit Testing - 6

Testing Fundamentals (3)

• Testing is the one step in software
engineering process that could be viewed as
destructive rather than constructive.
– “A successful test is one that breaks the

software.” [McConnell 1993]

• A successful test is one that uncovers an as
yet undiscovered defect.

• Testing can not show the absence of defects,
it can only show that software defects are
present.

• For most software exhaustive testing is not
possible.

Testing Steps

Unit

test

Unit

test

Unit

test

Integratio

n

test

Functio

n

test

e

test

e

test

Performanc Acceptanc Installatio

n

test

U
n
it

c
o
d
e

Unit Testing - 7

U
n

it

c
o

d
e

U
n
it

c
o
d
e

.

.

.

Integrate

d

modules

Functionin

g

system

Verified,

validate

d

softwar

e

Accepte

d

system

SYSTE

M

IN USE!

Design System
specifications functional

requirements requirements specification

Other Customer User

software requirementsenvironment

[Pfleeger 2001]

Unit Testing - 8

Unit Testing

• Unit Testing checks that an individual program unit

(subprogram, object class, package, module)

behaves correctly.

– Static Testing

• testing a unit without executing the unit code

– Dynamic Testing

• testing a unit by executing a program unit using test data

• There is some debate about what constitutes a

“unit”. Here some common definitions of a unit:

– the smallest chunk that can be compiled by itself

– a stand alone procedure of function

– something so small that it would be developed by a

single person

Unit Testing - 9

• First, unit testing in general

• Second, the role of unit testing in

test-driven design (TDD)

– Spring 05: We’ve done this already!

Unit Testing Techniques

Unit Testing - 10

Unit Testing - 11

Static Testing

• Symbolic Execution

– works well for small programs

• Program Proving

– difficult and costly to apply

– does not guarantee correctness

• AnomalyAnalysis

– unexecutable code (island code)

– uninitialized variables

– unused variables

– unstructured loop entry and exit

Unit Testing - 12

Dynamic Testing

• Black Box Techniques

– design of software tests relies on module
description to devise test data

– uses inputs, functionality, outputs in the
architectural design

– treats module like a “black box”

• White Box Techniques
– design of software tests relies on module source

code to devise test data

– analyze the module algorithm in the detailed
design

– treats module like a “ white box” or "glass box"

Unit Testing - 13

Common Testing Terms (1)

• test class

– a set of input data that is identified for testing

– Note difference from JUnit term

• test case

– specific data that is chosen for testing a test class.

• test Suite

– a set of test cases that serve a particular testing goal

• exhaustive testing

– test all logical paths in a software module

Example: Exhaustive Testing

Unit Testing - 14

get(x)

for i := 1.. 20 loop

if F(x) then

...

G(x) thenelse if

...

else if

...

else if

H(x) then

M(x) then

...

else

…

end if

get(x)

end loop

Suppose in developing a test

plan for the code at the left, you

decide to create a set of test

cases that would allow you to

execute all possible

combinations of the branches for

the 20 iterations of the for loop .

If it takes an average of 1

millisecond to execute a branch

of the code (e.g., the instructions

associated with the F(X)

branch), how long will it take to

run the test plan?

Unit Testing - 15

Basic Path Testing

• Basic Path Testing is a white box testing technique

that consists of the following steps:

– convert the unit into a “flow graph”

• A flow graph is a directed graph (for an algorithm) with

a "start node" and a "terminal node" (could have

multiple terminal nodes, but not ideal).

– compute a measure of the unit's logical

complexity

– use the measure to derive a “basic” set of

execution paths for which test cases are

determined.

Flow Graph Example

procedure XYZ is

A,B,C: INTEGER;

begin

GET(A); GET(B);

if A > 15 then

thenif B < 10

B := A +5;

else

B := A - 5;

end if

1.

2.

3.

4.

5.

6.

7.

8. else

9. A := B + 5;

10. end if;

end XYZ;

1

3 9

10

4 6

2

7

Unit Testing - 16

Unit Testing - 17

Cyclomatic Complexity

• The cyclomatic complexity (McCabe complexity) is a metric,
V(G), that describes the logical complexity of a flow graph, G.
V(G) can be computed using any of the following formulae:

– V(G) = E - N + 2

• where E = number of edges in G and N = number of
nodes in G

– V(G) = R

• where R = number of bounded regions in G

– V(G) = P + 1

• where P = number ofpredicates

• Studies have shown:

– V(G) is directly related to the number of errors in source
code

– V(G) = 10 is a practical upper limit for testing

Unit Testing - 18

Basic Path Set

• An execution path is a set of nodes and directed

edges in a flow graph that connects (in a directed

fashion) the start node to a terminal node.

• Two execution paths are said to be independent if

they do not include the same set of nodes and

edges.

• A basic set of execution paths for a flow graph is an

independent set of paths in which all nodes and

edges of the graph are included at least once. V(G)

provides an upper bound on the number of

independent paths needed.

Equivalence Partitioning

• Equivalence partitioning is an approach to black
box testing that divides the input domain of a
program into classes of data from which test cases
can be derived.

• Example: Suppose a program computes the value
of the function . This function
defines the following valid and invalid equivalence
classes:

X < = -2

-2 < X < 1

X >= 1

valid

invalid

valid

• Test cases would be selected from each
equivalence class.

Unit Testing - 19

Unit Testing - 20

Boundary Value Analysis (1)

• Boundary Value Analysis is a black box
testing technique that where test cases
are designed to test the boundary of an
input domain. Studies have shown that
more errors occur on the "boundary" of an
input domain rather than on the "center".

• Boundary value analysis complements
and can be used in conjunction with
equivalence partitioning.

Unit Testing - 21

Boundary Value Analysis (2)

• In previous example, after using equivalence
partitioning to generate equivalence classes,
boundary value analysis would dictate that
the boundary values of the three ranges be
included in the test data. That is, we might
choose the following test cases (for a 32 bit
system):

X <= -2 -231, -100, -2.1, -2

-2 < X < 1 -1.9, -1, 0, 0.9

X >= 1 1, 1.1,100, 231-1

Unit Testing - 22

Unit Test Planning

• Unit test planning is typically performed by the

unit developer

• Planning of a unit test should take place as

soon as possible.

– Black box test planning can take place as soon as

the functional requirements for a unit are specified.

– White box test planning can take place as soon as

the detailed design for a unit is complete.

• Why not wait until a unit is coded and compiled,

and ready for execution, before writing the test

plan?

Unit Testing - 23

More Specific JUnit Advice

• Handout from Pragmatic Unit Testing (by

Andrew Hunt and David Thomas)

• What to test? The Right-BICEP

Unit Testing - 24

Right-BICEP

• Right: Are the results right?

– Validate results

– Does the expected result match what the method

does?

• If you don’t know what “right” would be, then

how can you test? How do you know if your

code works?

– Perhaps requirements not known or stable

– Make a decision. Your tests document what you

decided. Reassess if it changes later.

Unit Testing - 25

Right-BICEP (cont’d)

• Should your JUnit test hard-code test

data to validate expected results?

• Option: use test data file with JUnit test

• See handout (p. 39) for example

– Not so hard to do this, is it?

• Allows you to do a large range of tests

cases as described elsewhere these

slides

Unit Testing - 26

Right-BICEP

• Boundary Conditions

– See earlier slides, and also consider:

– Garbage input values

– Badly formatted data

– Empty or missing values (0, null, etc.)

– Values out of reasonable range

– Duplicates if they’re not allowed

– Unexpected orderings

Unit Testing - 27

Right-BICEP

• Use this acronym, CORRECT, to remember:

– Conformance

– Ordering

– Range

– Reference

• Does code reference anything external outside of its control?

– Existence

– Cardinality

– Time (absolute and relative)

• Are things happening in order? On time? Intime?

Unit Testing - 28

Right-BICEP

• Check Inverse Relationships

– If your method does something that has an

inverse, then apply the inverse

– E.g. square and square-root. Insertion then

deletion.

– Beware errors that are common to both your

operations

• Seek alternative means of applying inverse if

possible

Unit Testing - 29

Right-BICEP

• Cross-check using other means

• Can you do something more than one

way?

– Your way, and then the other way. Match?

• Are there overall consistency factors you

can check?

– Overall agreement

Unit Testing - 30

Right-BICEP

• Force Error Conditions

• Some are easy:

– Invalid parameters, out of range values, etc.

• Others not so easy

– See JUnit slide on how to force exceptions

• Failures outside your code:

– Out of memory, disk full, network down, etc.

– Can simulate such failures
• Example: use Mock Objects

Unit Testing - 31

Right-BICEP

• Performance

– Perhaps absolute performance, or

– Perhaps how performance changes as input grows.

– Perhaps separate test suite in JUnit

• But… Other, perhaps better ways to do this

– JUnitPerf:

http://www.clarkware.com/software/JUnitPerf.html

http://www.clarkware.com/software/JUnitPerf.html

Unit Testing - 32

Unit Testing - 33

Example follows…

Unit Testing - 34

GCD Test Planning (1)

• Let’s look at an example of testing a unit
designed to compute the “greatest common
divisor” (GCS) of a pair of integers (not both
zero).
– GCD(a,b) = c where

• c is a positive integer

• c is a common divisor of a and b (e.g., c divides a and c
divides b)

• c is greater than all other common divisors of a andb.

– For example
• GCD(45, 27) =9

• GCD (7,13) =1

• GCD(-12, 15) =3

• GCD(13, 0) =13

• GCD(0, 0)undefined

Unit Testing - 35

GCD Test Planning (2)

• How do we proceed to determine the tests
cases?
1. Design an algorithm for the GCD function.

2. Analyze the algorithm using basic path analysis.

3. Determine appropriate equivalence classes for the
input data.

4. Determine the boundaries of the equivalence
classes.

5. Then, choose tests cases that include the basic path
set, data form each equivalence class, and data at
and near the boundaries.

GCD Algorithm

note: Based on Euclid’s algorithm

1. function gcd (int a, int b) {

2. int temp, value;

3. a := abs(a);

4. b := abs(b);

5. if (a = 0) then

6. value := b; // b is the GCD

7. else if (b = 0) then

8. raise exception;

9. else

10. loop

11. temp := b;

12. b := a mod b;

13. a := temp;

14. until (b = 0)

15. value := a;

16. end if;

17. return value;

18. end gcd

1

5

1

0

9

17

7

6

18
Unit Testing - 36

Unit Testing - 37

GCD Test Planning (3)

• Basic Path Set

– V(G) = 4

– (1,5,6,17,18), (1,5,7,18), (1,5,7,9,10,17,18),

(1,5,7,9,10,9,10,17,18)

• Equivalence Classes

– Although the the GCD algorithm should accept any integers as

input, one could consider 0, positive integers and negative

integers as “special” values. This yields the following classes:

• a < 0 and b < 0, a < 0 and b > 0, a > 0 and b < 0

• a > 0 and b > 0, a = 0 and b < 0, a = 0 and b > 0

• a > 0 and b = 0, a > 0 and b = 0, a = 0 and b = 0

• Boundary Values

– a = -231, -1, 0, 1, 231-1 and b = -231, -1, 0, 1, 231-1

Unit Testing - 38

GCD Test Plan

Anything missing?

Unit Testing - 39

Test Implementation (1)

• Once one has determined the testing strategy,
and the units to tested, and completed the unit
test plans, the next concern is how to carry on
the tests.
– If you are testing a single, simple unit that does not

interact with other units (like the GCD unit), then one
can write a program that runs the test cases in the
test plan.

– However, if you are testing a unit that must interact
with other units, then it can be difficult to test it in
isolation.

– The next slide defines some terms that are used in
implementing and running test plan.

Unit Testing - 40

Test Implementation Terms

• Test Driver

– a class or utility program that applies test cases to a
component being tested.

• Test Stub

– a temporary, minimal implementation of a component
to increase controllability and observability in testing.

– When testing a unit that references another unit, the
unit must either be complete (and tested) or stubs
must be created that can be used when executing a
test case referencing the other unit.

• Test Harness

– A system of test drivers, stubs and other tools to
support test execution

Unit Testing - 41

Test Implementation (2)

• Here is a suggested sequence of steps to followed in testing a unit.

– Once the design for the unit is complete, carry out a static test
of the unit. This might be a single desk check of the unit or it
may involve a more extensive symbolic execution or
mathematic analysis.

– Complete a test plan for a unit.

– If the unit references other units, not yet complete, create stubs
for these units.

– Create a driver (or set of drivers) for the unit, which includes the
following;

• construction of test case data (from the testplan)

• execution of the unit, using the test casedata

• provision for the results of the test case execution to be
printed or logged as appropriate

Unit Testing - 42

Unit Testing in TDD

• Motto: “Clean code that works.” (Ron
Jeffries)

• Unit testing has “broader goals” that just
insuring quality
– Improve developers lives (coping,

confidence)

– Support design flexibility and change

– Allow iterative development with working
code early

Unit Testing - 43

Unit Testing Benefits

• Developers can work in a predictable way

of developing code

• Programmers write their own unit tests

• Get rapid response for testing small

changes

• Build many highly-cohesive

loosely-coupled modules to make unit

testing easier

Unit Testing - 44

Red/Green/Refactor

• The TDD mantra of how to code:

– Red: write a little test that doesn’t work,

perhaps even doesn’t compile

– Green: Write code to make the test work

quickly (perhaps not the best code)

– Refactor: Eliminate duplication and other

problems that you did to just make the test

work

Unit Testing - 45

Assigned Readings

• http://junit.sourceforge.net/doc/testinfected/testing.htm

• http://junit.sourceforge.net/doc/cookstour/cookbook.htm

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/cookstour/cookbook.htm

Unit Testing - 46

Object-Oriented Testing Issues

• The object class is the basic testing unit for
system developed with OO techniques.
– This is especially appropriate if strong cohesion and

loose coupling is applied effectively in the class
design.

• An incremental testing approach is dictated by
– The package/class design decomposition.

– The incremental nature of the development process.

• Information hiding restricts/constrains testing to
using a white-box approach.

• Encapsulation motivates testing based on the
class interface.

Unit Testing - 47

Class Testing (1)

• Class test cases are created by examining the specification of the

class.

– This is more difficult if the class is a subclass and inherits data

and behavior from a super class. A complicated classhierarchy

can be pose significant testing problems.

• If you have a state model for the class, test each transition - devise

a driver that sets an object of the class in the source state of the

transition and generates the transition event.

• Class Constraints/Invariants should be incorporated into the class

test.

• All class methods should be tested, but testing a method in

isolation from the rest of the class is usually meaningless

– In a given increment, you may not implement all methods; if so,

create stubs for such methods.

Unit Testing - 48

Class Testing (2)

• To test a class, you may need instances

of other classes.

• Interaction diagrams provide useful

guidance in constructing class test cases:

– They provide more specific knowledge about

how objects of one class interact with

instances of other classes.

– Messages sent to a class object provide a

guidance on which test cases are most

critical for that class.

Unit Testing - 49

Method Testing (1)

• A public method in a class is typically tested
using a black-box approach.
– Start from the specification, no need to look at the

method body.

– Consider each parameter in the method signature,
and identify its equivalence classes.

– Incorporate pre-conditions and post-conditions in
your test of a method.

– Test exceptions.

• For complex logic, also use white-box testing or
static testing.

Unit Testing - 50

Method Testing (2)

• For private methods, either

– modify the class (temporarily) so that it can

be tested externally:

• change the access to public

• or incorporate a test driver within the class

– or use static test methods, such as program
tracing or symbolic execution

Unit Testing - 51

Incremental Testing

• Incremental testing indicates that we test each
unit in isolation, and then integrate each unit,
one at a time, into the system, testing the
overall system as we go.

• Classes that are dependent on each other
called class clusters, are good candidates for
an increment integration.

• Candidate class clusters:
– Classes in a package

– Classes in a class hierarchy.

– Classes associated with the interaction diagram for a
use case.

Unit Testing - 52

Integration Test Plan

• An Integration Test checks and verifies that the
various components in a class cluster
communicate properly with each other.

• With this plan, the emphasis is not on whether
system functionality is correctly implemented,
but rather do all the cluster classes “fit” together
properly.

• A single test plan, for each cluster, which tests
the communication between all cluster
components is typically sufficient.

Unit Testing - 53

Increment Test Planning

• Determine the classes to be tested in an

increment.

• Determine the appropriate “class clusters”.

• Develop a unit test plan and test driver for each

class.

• Develop an integration test plan and test driver

for each class cluster.

• Develop a test script that details the

components to be tested and the order in which

the plans will be executed.

Unit Testing - 54

Testing Tools

• There are a number of tools that have been

developed to support the testing of a unit or

system.

– googling “Software Testing Tools” will yield

thousands of results.

• JUnit testing (http://www.junit.org/index.htm) is

a popular tool/technique that can be integrated

into the development process for a unit coded

in Java.

http://www.junit.org/index.htm

Unit Testing - 55

References

• [Beck 2004] Beck, K., and Gamma, E. Test Infected: Programmers
Love Writing Tests, http://members.pingnet.ch/gamma/junit.htm,
accessed July 2004.

• [Binder 1999] Binder, R.V., Testing Object-Oriented Systems,
Addison-Wesley, 1999.

• [Humphrey 1995] Humphrey, Watts S., A Discipline for Software
Engineering, Addison Wesley, 1995.

• [McConnell 1993] McConnell, Steve, Code Complete, A Practical
Handbook of Software Construction, Microsoft Press, 1993.

• [Jorgensen 2002] Jorgensen, Paul C., Software Testing: A
Craftsman’s Approach, 2nd edition, CRC Press,2002.

• [Pfleeger 2001] Pfleeger, S., Software Engineering Theory and
Practice, 2nd Edition, Prentice-Hall, 2001.

• [Pressman 2005] Pressman, R.S., Software Engineering: A
Practitioner’s Approach, 6th edition, McGraw-Hill, 2005.

http://members.pingnet.ch/gamma/junit.htm

