Biochemistry Carbohydrates Dr Jilna Alex N

BIOGENIC ELEMENTS

- About 22 out of 100 odd elements of periodic table are essentially found in living organisms and are generally called Biogenic elements
- They fall under four major categories
- 1) Macro biogenic: C, H, O and N
- 2) Oligo biogenic: Na, K, Ca, Mg, S, P, Fe etc.
- 3) Micro biogenic: Cu, Co, Mn, Zn, Cl, F, Br, I etc.
- 4) Ultramicro biogenic: Bo, Al, Ni, Cd, Cr, As, Si, Se etc.

BIOMOLECULES

- The complex, mysterious constituents of living matter are generally called *Biomolecules.* These compounds may be ionic, molecuar, organic or inorganic
- Generally Organic biomolecules are two major groups
- 1) Micro molecules : Mono, Oligo saccharides, Amino acids, Fatty acids, Glycerol, Nucleoties
- 2) Macro molecules : Polysaccharides, Proteins, Fats, Nucleic acids, Enzymes, Hormones, Vitamins etc.
- Inorganic biomolecules include water and mineral salts

CARBOHYDRATES

- A carbohydrate molecule is essentially a chain of several hydroxyl (-OH) gro g g g with of erminal aldehyde () or keto () group
- Those carbohydrates which contain aldehyde group are called *aldoses* and those contain keto group are known as *ketoses*
- The carbonyl group is attached to the C-1 in aldoses (ultir H, O, C-2) to C-2 (penultimate C, C-OH, CH2OH, C

CH_OH

D-Glyceraldehyde Dihydroxyacetone

C H_OH

CLASSIFICATION

- Based on Physico-chemical properties
- Neutral : Have only hydroxyl and carboxyl groups
- Basic : Have amino group in addition to hydroxyl and

carboxyl groups

- Acidic : Have additional carboxyl group apart from usual
 - hydroxyl and carboxyl groups
- Based on molecular complexity
- Monosaccharides

MONOSACCHARIDES

- Are the simplest monomeric carbohydrates that cannot be further hydrolysed into simpler carbohydrates
- The backbone of a monosaccharide is an unbranched, single-bonded carbon chain (usually having 3-7 carbon atoms) with a single polyhydroxy aldehyde or polyhydroxy ketone unit

MONOSACCHARIDES OF BILOGICAL SIGNIFICANCE

MONOSACCHARIDE	ALDOSES	KETOSES	
Trioses (C ₃ H ₆ O ₃)	Glycerose (glyceraldehyde)	Dihydroxyacetone	
Tetroses (C ₄ H ₈ O ₄)	Erythrose	Erythrulose	
Pentoses (C ₅ H ₁₀ O ₅)	Ribose, Arabinose, Xylose	Ribulose, Xylulose	
Hexoses (C ₆ H ₁₂ O ₆)	Glucose, Galactose. Mannose	Fructose	
Heptoses (C ₇ H ₁₄ O ₇)		Sedoheptulose	

D-Ketoses

Chemical properties

- 1) Are *reducing sugars* capable of reducing some oxidising agents such as hydrogen peroxide, ferric cyanide, ferric ion (Fe³⁺), cupric ion (Cu²⁺), Ag⁺, Hg²⁺, Bi³⁺ etc due to the presence of free carbonyl carbon.
- Here, the *C*Example anomeric carbon) ge CHO COOH oxylic acid and the ox -OH H--OH Hredused. -H HO-HO--H Br2 H-OH H-OH н—он H-OH CH₂OH CH₂OH glucose gluconic acid

- 2) Exhibits *stereoisomerism* where the molecules have same chemical composition, but have different spatial configuration
- Are also optically active strerioisomers which differ from each other in their ability to rotate the plane of polarised light either to the left or right
- The number of optical isomers of a molecule depends on the number of its asymmetric (chiral) atoms. It is always equal to 2ⁿ, where n represents the number of asymmetric atoms.

Thus a molecule having two asymmetrical

Optical isomers are of two groups, enatiomers and diastereomers.

- Enatiomers are a pair of optical isomers which are non-superimposable mirror images of each other. One form in which -OH of the primary alcohol (Chiral C- atom farthest from aldehyde group) is located towards the right side and is designated as Dextro/D form. And in the other form the -OH of the primary alcohol is located towards the left side and is designated as Laevo/L form
 - Eg: D-Glucose and L-Glucose

 Usually, molecules having right-handed configuration (D-isomers) are

L-

D- Glucose Glucose

 Diastereomers include all optical isomers occurring in a compound either in D-series or L-series. They are not mirror images each other

Eg: A compound having two asymmetrical carbon (aldotetrose, $C_4H_8O_4$) will have four optical isomers, a pair of D isomers and a pair of L isomers. The two D forms are not mirror image of each

3) Exhibits *epimerism*

- Epimerism is the phenomenon in which the diastereomers of sugar differ from each other in their configuration with respect to only a single carbon atom
 - Eg: D-glucose and D-mannose are epimers with respect to carbon atom C-2 and

5) form *Glycosidic bonds*

Glycosidic bonds are covalent bonds that joins two monosaccharide units. It is formed by <u>dehydration condensation</u> of the hydroxyl group of the C-1 of one monosaccharide and the hydroxyl group of the C-2, C-4, C-6 of another monosaccharide with the elimination of ^H Other Matrice

- Based on the steric configuration of C-1 which is involved in glycosidic linkage, two kinds of glycosidic bonds are recognised
- Alpha (α) linkage : where –OH is attached to the C-1 is below the plane of the ring
- 2) Beta (β) linkage : where –OH is attached to the C-1 is above the plane of the ring

$\mathsf{GLUCOSE}, \mathsf{C}_{6}\mathsf{H}_{12}\mathsf{O}_{6}$

- Also called Dextran, grape sugar or corn sugar is sweet water soluble monosaccharide
- It has 6 C atoms, Five –OH groups and a terminal aldehyde group
- Exist as both straight chain and six-membered glucopyranose ring
- Is a reducing sugar
- Has four asymmetric C atoms and hence exist in 16 optically active isomeric forms which are categorised into enatiomers and diastereomers
- Naturally occurs in D-glucose form and rotates plane polarised light in clockwise direction

• Functions

- 1. Serves as immediate source of energy
- 2. Essential for proper functioning of brain cells
- 3. Constitute the basic unit from which energy rich starch and glycogen are derived
- 4. In plant body it constitute the c
- 5. Is an essential constituent of blo
- 6. Mainly produced by photosynt

D-Glucose

FRUCTOSE, C_6H_{12}O_6

- Fruit sugar or levulose (levo rotatory)
- Major component in honey
- Obtained by hydrolysis of corn sugar, Dahlia
- Exist as keto chain and also α & β furanose and pyranose form

$\mathbf{MANNOSE, C_6H_{12}O_6}$

D-Mannose

- C 2 Epimer of glucose found in many fruits apple, orange, peaches etc
- Important in human metabolism, especially in the N-linked glycosylation of certain proteins (is a post –translational modification of proteins occurring in ER)

- Also known as milk sugar
- When combined with glucose forms the disaccharide lactose
- Enhances immune system
- Maintains bacterial flora
- Helps in healing wounds, lowering the risk of cataract and decreasing inflammation while boosting absorption of calcium
- Act as a chemical chaperon enhancing assembly of proteins within the body
- Is a component of antigens present on blood cells – In O and A antigens there are two monomers of galactose whereas in the B antigens there are three monomers of galactose

DISACCHARIDES – C¹²H²²O¹¹

- Are condensation products of two monosaccharide units with the loss of H₂O eg: Maltose (α 1-4 linkage between two α glucose units) and Sucrose (α 1 β 2 linkage between a α glucose and a β fructose unit)
- When the anomeric carbon (Carbonyl carbon) is involved in glycosidic bonding, those sugars will not be oxidised by Fe³⁺ or cupric ion (Cu²⁺) ions. Such sugars are known as non-reducing sugars and those having a free anomeric carbon are known as

MALTOSE

- Colourless, Crystalline, Water soluble, Reducing sugar found in starch and glycogen
- Formed by condensation polymerisation of two glucose units through α, 1-4 linkage
- Maltose is a reducing sugar because the ring of one of the two glucose units can present a free aldehyde group depending on the nature of the glycosidic bond
- In higher animals, maltose is the end product of the oral and intestinal digestion of starch by *amylase* which can be further broken down to glucose units by *maltase*
- An isomer of maltose is isomaltose, formed by condensation polymerisation of two glucose

SUCROSE

- Cane sugar or table sugar
- Sweet, water soluble non-redusing sugar found in sugar cane, beetroot, pineapple, honey, fruits etc
- Formed by condensation polymerisation of one molecule of α - D glucopyranosyl and one molecule of β – D fructofuranoside units through α 1 – β 2 linkage
- Since the linkage is formed between aldehyde group of glucose and ketone group of fructose , it is a non-reducing sugar
- Sucrose as such is dextrorotatory but its hydrolysis product is levo rotatory due to the predominance levorotatory effect of fructose.

This phonomonan is called introvion

Biological functions

- Important source of metabolic energy
- Act as a storage form of enegy in sugarcane and beetroot

POLYSACCHARIDES [GLYCANS] $(C_6H_{10}O_5)n$

- Are the most complex type of carbohydrates formed by the condensation polymerisation of many monosachharide units
- Hydrolysable, long, linear, branched/unbranched chains

either formed by same units (homopolysachharides –eg: starch, glycogen, chitin, inulin etc.) or different units (heteropolysachharides eg: agar)

 Polysaccharides containing aminosugars and uronic acid are known as

CLASSIFICATION OF CARBOHYDRATES

(2) Disaccharides are condensation products of two monosaccharide units; examples are maltose and sucrose.

(3) Oligosaccharides are condensation products of three to ten monosaccharides.

(4) Polysaccharides are condensation products of more than ten monosaccharide units; examples are the starches and dextrins, which may be linear or branched polymers.

06/15/14

Biochemistry For Medics- Lecture notes

DISACCHARIDES OF BILOGICAL SIGNIFICANCE

Sugar	Composition	Source	
Isomaltose	O-α-D-glucopyranosyl- (1->6)-α-D-glucopyranose	Enzymic hydrolysis of starch (the branch points in amylopectin)	
Maltose	<i>Ο</i> -α-D-glucopyranosyl- (1->4)-α-D-glucopyranose	Enzymic hydrolysis of starch (amylase); germinating cereals and malt	
Lactose	O-α-D-galactopyranosyl- (1->4)-β-D-glucopyranose	Milk (and many pharmaceutical preparations as a filler)	
Sucrose	O-α-D-glucopyranosyl- (1->2)-β-D- fructofuranoside	Cane and beet sugar, sorghum and some fruits and vegetables	

06/15/14

Biochemistry For Medics- Lecture notes

7

POLYSACCHARIDES OF BIOLOGICAL SIGNIFICANCE

A) Homopolysacchrides	Glucosan	Fructosan	Galactosan
	Starch	Inulin	Agar
	Glycogen	-	-
	Dextrins	-	-
	Cellulose	-	
B) Hetero polysaccharides	Non sulfated	Sulfated	Neutral polysaccharides
	Hyaluronic acid	Keratan sulfate	Blood group substances
	Chondroitin	Chondroitin sulfate	
		Dermatan sulfate	
		Heparin	

06/15/14

Biochemistry For Medics- Lecture notes

8