
1

Loaders and Linkers

Sr.Nisha C.D

Asst.Professor

Dept Of Computer Science

L.F College Guruvayoor



2

Introduction

 To execute an object program, we needs

» Relocation, which modifies the object program so that it can be 

loaded at an address different from the location originally specified

» Linking, which combines two or more separate object programs 

and supplies the information needed to allow references between 

them

» Loading and Allocation, which allocates memory location and 

brings the object program into memory for execution



3

Overview of Chapter 3

 Type of loaders

» assemble-and-go loader

» absolute loader (bootstrap loader)

» relocating loader (relative loader)

» direct linking loader

 Design options

» linkage editors

» dynamic linking

» bootstrap loaders



4

Assemble-and-go Loader

 Characteristic

» the object code is stored in memory after assembly

» single JUMP instruction

 Advantage

» simple, developing environment

 Disadvantage

» whenever the assembly program is to be executed, it has to 

be assembled again

» programs have to be coded in the same language



5

Design of an Absolute Loader

 Absolute Program

» Advantage

– Simple and efficient

» Disadvantage

– the need for programmer to specify the actual address

– difficult to use subroutine libraries

 Program Logic



6

Fig. 3.2 Algorithm for an absolute loader

Begin

read Header record

verify program name and length

read first Text record

while record type is not ‘E’ do

begin

{if object code is in character form, convert into internal 

representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end



7

Object Code Representation

 Figure 3.1 (a)

» each byte of assembled code is given using its hexadecimal 

representation in character form

» easy to read by human beings

 In general

» each byte of object code is stored as a single byte 

» most machine store object programs in a binary form

» we must be sure that our file and device conventions do not 

cause some of the program bytes to be interpreted as 

control characters



8

A Simple Bootstrap Loader

 Bootstrap Loader

» When a computer is first tuned on or restarted, a special 

type of absolute loader, called bootstrap loader is executed

» This bootstrap loads the first program to be run by the 

computer -- usually an operating system

 Example (SIC bootstrap loader)

» The bootstrap itself begins at address 0 

» It loads the OS starting address 0x80

» No header record or control information, the object code is 

consecutive bytes of memory



9

Fig. 3.3 SIC Bootstrap Loader Logic

Begin
X=0x80 (the address of the next memory location to be loaded 
Loop

AGETC (and convert it from the ASCII character code to the value 

of the hexadecimal digit)
save the value in the high-order 4 bits of S
AGETC
combine the value to form one byte A (A+S)
store the value (in A) to the address in register X
XX+1

End

0~9 : 48 
A~F : 65 

GETC Aread one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A A-48 (0x30)

if A<10 then return

A A-7 (48+7=55)

return 



10

Relocating Loaders

 Motivation

» efficient sharing of the machine with larger memory and 

when several independent programs are to be run together

» support the use of subroutine libraries efficiently

 Two methods for specifying relocation

» modification record (Fig. 3.4, 3.5)

» relocation bit (Fig. 3.6, 3.7)

– each instruction is associated with one relocation bit

– these relocation bits in a Text record is gathered into bit masks



11

Modification Record

 For complex machines

 Also called RLD specification

» Relocation and Linkage Directory

Modification record
col 1: M
col 2-7: relocation address 
col 8-9: length (halfbyte)
col 10: flag (+/-)
col 11-17: segment name



12

Relocation Bit

 For simple machines

 Relocation bit

» 0: no modification is necessary

» 1: modification is needed

 Twelve-bit mask is used in each Text record

» since each text record contains less than 12 words

» unused words are set to 0

» any value that is to be modified during relocation must 

coincide with one of these 3-byte segments

– e.g. line 210

Text record
col 1: T
col 2-7: starting address 
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code



13

Program Linking

 Goal
» Resolve the problems with EXTREF and EXTDEF from different 

control sections

 Linking

» 1. User, 2. Assembler, 3. Linking loader

 Example

» Program in Fig. 3.8 and object code in Fig. 3.9

» Use modification records for both relocation and linking

– address constant

– external reference



14

Program Linking Example

Program A Program B Program C

Label Expression LISTA, ENDA LISTB, ENDB LISTC, ENDC

REF1 LISTA local, R, PC external external

REF2 LISTB+4 external local, R, PC external

REF3 ENDA-LISTA local, A external external

REF4 ENDA-LISTA+LISTC local, A external local, R

REF5 ENDC-LISTC-10 external external local, A

REF6 ENDC-LISTC+LISTA-1 local, R external local, A

REF7 ENDA-LISTA-(ENDB-LISTB) local, A local, A external

REF8 LISTB-LISTA local, R local, R external



15

Program Linking Example

 Fig. 3.10

 Load address for control sections

» PROGA 004000 63

» PROGB 004063 7F

» PROGC 0040E2 51

 Load address for symbols

» LISTA: PROGA+0040=4040

» LISTB: PROGB+0060=40C3

» LISTC: PROGC+0030=4112

 REF4 in PROGA

» ENDA-LISTA+LISTC=14+4112=4126

» T0000540F000014FFFFF600003F000014FFFFC0

» M00005406+LISTC



16

Program Logic and Data Structure

 Two Passes Logic

» Pass 1: assign addresses to all external symbols

» Pass 2: perform the actual loading, relocation, and linking

 ESTAB (external symbol table)

Control section Symbol Address Length

Progam A 4000 63

LISTA 4040

ENDA 4054

Program B 4063 7F

LISTB 40C3

ENDB 40D3

Program C 40E2 51

LISTC 4112

ENDC 4124



17

Pass 1 Program Logic

 Pass 1: 

» assign addresses to all external symbols 

 Variables

» PROGADDR (program load address) from OS

» CSADDR (control section address)

» CSLTH (control section length)

» ESTAB

 Fig. 3.11(a)

» Process Define Record



18

Pass 2 Program Logic

 Pass 1: 

» perform the actual loading, relocation, and linking

 Modification record

» lookup the symbol in ESTAB

 End record for a main program

» transfer address

 Fig. 3.11(b)

» Process Text record and Modification record



19

Improve Efficiency 

 Use local searching instead of multiple searches of 

ESTAB for the same symbol

» assign a reference number to each external symbol

» the reference number is used in Modification records

 Implementation

» 01: control section name

» other: external reference symbols

 Example 

» Fig. 3.12



20

Figure 3.12

Ref No. Symbol Address

1 PROGA 4000

2 LISTB 40C3

3 ENDB 40D3

4 LISTC 4112

5 ENDC 4124

Ref No. Symbol Address

1 PROGB 4063

2 LISTA 4040

3 ENDA 4054

4 LISTC 4112

5 ENDC 4124

Ref No. Symbol Address

1 PROGC 4063

2 LISTA 4040

3 ENDA 4054

4 LISTB 40C3

5 ENDB 40D3

PROGA

PROGB PROGC


