
1

Loaders and Linkers

Sr.Nisha C.D

Asst.Professor

Dept Of Computer Science

L.F College Guruvayoor



2

Introduction

 To execute an object program, we needs

» Relocation, which modifies the object program so that it can be 

loaded at an address different from the location originally specified

» Linking, which combines two or more separate object programs 

and supplies the information needed to allow references between 

them

» Loading and Allocation, which allocates memory location and 

brings the object program into memory for execution



3

Overview of Chapter 3

 Type of loaders

» assemble-and-go loader

» absolute loader (bootstrap loader)

» relocating loader (relative loader)

» direct linking loader

 Design options

» linkage editors

» dynamic linking

» bootstrap loaders



4

Assemble-and-go Loader

 Characteristic

» the object code is stored in memory after assembly

» single JUMP instruction

 Advantage

» simple, developing environment

 Disadvantage

» whenever the assembly program is to be executed, it has to 

be assembled again

» programs have to be coded in the same language



5

Design of an Absolute Loader

 Absolute Program

» Advantage

– Simple and efficient

» Disadvantage

– the need for programmer to specify the actual address

– difficult to use subroutine libraries

 Program Logic



6

Fig. 3.2 Algorithm for an absolute loader

Begin

read Header record

verify program name and length

read first Text record

while record type is not ‘E’ do

begin

{if object code is in character form, convert into internal 

representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end



7

Object Code Representation

 Figure 3.1 (a)

» each byte of assembled code is given using its hexadecimal 

representation in character form

» easy to read by human beings

 In general

» each byte of object code is stored as a single byte 

» most machine store object programs in a binary form

» we must be sure that our file and device conventions do not 

cause some of the program bytes to be interpreted as 

control characters



8

A Simple Bootstrap Loader

 Bootstrap Loader

» When a computer is first tuned on or restarted, a special 

type of absolute loader, called bootstrap loader is executed

» This bootstrap loads the first program to be run by the 

computer -- usually an operating system

 Example (SIC bootstrap loader)

» The bootstrap itself begins at address 0 

» It loads the OS starting address 0x80

» No header record or control information, the object code is 

consecutive bytes of memory



9

Fig. 3.3 SIC Bootstrap Loader Logic

Begin
X=0x80 (the address of the next memory location to be loaded 
Loop

AGETC (and convert it from the ASCII character code to the value 

of the hexadecimal digit)
save the value in the high-order 4 bits of S
AGETC
combine the value to form one byte A (A+S)
store the value (in A) to the address in register X
XX+1

End

0~9 : 48 
A~F : 65 

GETC Aread one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A A-48 (0x30)

if A<10 then return

A A-7 (48+7=55)

return 



10

Relocating Loaders

 Motivation

» efficient sharing of the machine with larger memory and 

when several independent programs are to be run together

» support the use of subroutine libraries efficiently

 Two methods for specifying relocation

» modification record (Fig. 3.4, 3.5)

» relocation bit (Fig. 3.6, 3.7)

– each instruction is associated with one relocation bit

– these relocation bits in a Text record is gathered into bit masks



11

Modification Record

 For complex machines

 Also called RLD specification

» Relocation and Linkage Directory

Modification record
col 1: M
col 2-7: relocation address 
col 8-9: length (halfbyte)
col 10: flag (+/-)
col 11-17: segment name



12

Relocation Bit

 For simple machines

 Relocation bit

» 0: no modification is necessary

» 1: modification is needed

 Twelve-bit mask is used in each Text record

» since each text record contains less than 12 words

» unused words are set to 0

» any value that is to be modified during relocation must 

coincide with one of these 3-byte segments

– e.g. line 210

Text record
col 1: T
col 2-7: starting address 
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code



13

Program Linking

 Goal
» Resolve the problems with EXTREF and EXTDEF from different 

control sections

 Linking

» 1. User, 2. Assembler, 3. Linking loader

 Example

» Program in Fig. 3.8 and object code in Fig. 3.9

» Use modification records for both relocation and linking

– address constant

– external reference



14

Program Linking Example

Program A Program B Program C

Label Expression LISTA, ENDA LISTB, ENDB LISTC, ENDC

REF1 LISTA local, R, PC external external

REF2 LISTB+4 external local, R, PC external

REF3 ENDA-LISTA local, A external external

REF4 ENDA-LISTA+LISTC local, A external local, R

REF5 ENDC-LISTC-10 external external local, A

REF6 ENDC-LISTC+LISTA-1 local, R external local, A

REF7 ENDA-LISTA-(ENDB-LISTB) local, A local, A external

REF8 LISTB-LISTA local, R local, R external



15

Program Linking Example

 Fig. 3.10

 Load address for control sections

» PROGA 004000 63

» PROGB 004063 7F

» PROGC 0040E2 51

 Load address for symbols

» LISTA: PROGA+0040=4040

» LISTB: PROGB+0060=40C3

» LISTC: PROGC+0030=4112

 REF4 in PROGA

» ENDA-LISTA+LISTC=14+4112=4126

» T0000540F000014FFFFF600003F000014FFFFC0

» M00005406+LISTC



16

Program Logic and Data Structure

 Two Passes Logic

» Pass 1: assign addresses to all external symbols

» Pass 2: perform the actual loading, relocation, and linking

 ESTAB (external symbol table)

Control section Symbol Address Length

Progam A 4000 63

LISTA 4040

ENDA 4054

Program B 4063 7F

LISTB 40C3

ENDB 40D3

Program C 40E2 51

LISTC 4112

ENDC 4124



17

Pass 1 Program Logic

 Pass 1: 

» assign addresses to all external symbols 

 Variables

» PROGADDR (program load address) from OS

» CSADDR (control section address)

» CSLTH (control section length)

» ESTAB

 Fig. 3.11(a)

» Process Define Record



18

Pass 2 Program Logic

 Pass 1: 

» perform the actual loading, relocation, and linking

 Modification record

» lookup the symbol in ESTAB

 End record for a main program

» transfer address

 Fig. 3.11(b)

» Process Text record and Modification record



19

Improve Efficiency 

 Use local searching instead of multiple searches of 

ESTAB for the same symbol

» assign a reference number to each external symbol

» the reference number is used in Modification records

 Implementation

» 01: control section name

» other: external reference symbols

 Example 

» Fig. 3.12



20

Figure 3.12

Ref No. Symbol Address

1 PROGA 4000

2 LISTB 40C3

3 ENDB 40D3

4 LISTC 4112

5 ENDC 4124

Ref No. Symbol Address

1 PROGB 4063

2 LISTA 4040

3 ENDA 4054

4 LISTC 4112

5 ENDC 4124

Ref No. Symbol Address

1 PROGC 4063

2 LISTA 4040

3 ENDA 4054

4 LISTB 40C3

5 ENDB 40D3

PROGA

PROGB PROGC


