Sr.Nisha C.D
Asst.Professor
Dept Of Computer Science
L.F College Guruvayoor

Introduction

» Linking, which combines two or more separate object programs
and supplies the information needed to allow references between
them

» Loading and Allocation, which allocates memory location and
brings the object program into memory for execution

Overview of Chapter 3

» relocating loader (relative loader)
» direct linking loader
e Design options
» linkage editors
» dynamic linking

Assemble-and-go Loader

e Advantage
» simple, developing environment

e Disadvantage

» whenever the assembly program is to be executed, it has to
be assembled again

Design of an Absolute Loader

» Disadvantage
— the need for programmer to specify the actual address
— difficult to use subroutine libraries

e Program Logic

Fig. 3.2 Algorithm for an absolute loader

read first Text recor
while record type is not ‘E’ do
begin
{if object code is in character form, convert into internal
representation}
move object code to specified location in memory

Object Code Representation

» easy to read by human beings

e In general
» each byte of object code is stored as a single byte
» most machine store object programs in a binary form

» we must be sure that our file and device conventions do not
cause some of the program bytes to be interpreted as

A Simple Bootstrap Loader

~ Bootstrap Loader
When a computer is first tuned on or restarted, a special
type of absolute loader, called bootstrap loader is executed
This bootstrap loads the first program to be run by the
computer -- usually an operating system

e Example (SIC bootstrap loader)
The bootstrap itself begins at address 0O
It loads the OS starting address 0x80

No header record or control information, the object code is
consecutive bytes of memory

Fig. 3.3 SIC Bootstrap Loader Logic

Begin
X=0x80 (the address of the next memory location to be loaded
Loop
A«GETC (and convert it from the ASCII character code to the value
of the hexadecimal digit)
save the value in the high-order 4 bits of S
A<GETC
combine the value to form one byte A< (A+S)
store the value (in A) to the address in register X

XX+1 GETC A<«-read one character
End if A=0x04 then jump to 0x80
If A<48 then GETC
0~9:48
A<F - 65 A < A-48 (0x30)

If A<10 then return
A < A-7 (48+7=55)
return

Relocating Loaders

» support the use of subroutine libraries efficiently

e Two methods for specifying relocation
» modification record (Fig. 3.4, 3.5)

» relocation bit (Fig. 3.6, 3.7)
— each instruction is associated with one relocation bit
— these relocation bits in a Text record is gathered into bit masks

Modification Record

Modification record
col1: M
col 2-7: relocation address
col 8-9: length (halfbyte)
col 10: flag (+/-)
col 11-17: segment name

11

Relocation Bit

» For simple machines
+ Relocation bit
Text record

0: no modification is necessary col1: T

: PTRRTR col 2-7: starting address
1: modification is needed col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code

e Twelve-bit mask is used in each Text record
since each text record contains less than 12 words
unused words are setto O

any value that is to be modified during relocation must
coincide with one of these 3-byte segments

— e.g. line 210

Program Linking

¢ LINKINg
» 1. User, 2. Assembler, 3. Linking loader
e Example

» Program in Fig. 3.8 and object code in Fig. 3.9

» Use modification records for both relocation and linking
— address constant

13

Program Linking Example

REF3 ENDA-LISTA local, A external _ _(_extt_er_nal_ .
REF4 ENDA-LISTA+LISTC local, A external [:ilocEl R
REF5 ENDC-LISTC-10 external external local, A
REF6 ENDC-LISTC+LISTA-1 Uibeab R external local, A
REF7 ENDA-LISTA-(ENDB-LISTB)| local A local A external
REF8 LISTB-LISTA cifecal Rf i vfocal R external

14

Program Linking Example

» PROGC 0040E2 51

e Load address for symbols
» LISTA: PROGA+0040=4040
» LISTB: PROGB+0060=40C3
» LISTC: PROGC+0030=4112

e REF4in PROGA

15

Program Logic and Data Structure

o ESTAB (external symbol table)

Control section |Symbol Address Length
Progam A 4000 63
LISTA 4040
ENDA 4054
Program B 4063 7F

LISTC 4112

ENDC 4124 16

Pass 1 Program Logic

» PROGADDR (program load address) from OS
» CSADDR (control section address)

» CSLTH (control section length)

» ESTAB

o Fig. 3.11(a)

17

Pass 2 Program Logic

» lookup the symbol in ESTAB

e End record for a main program
» transfer address

o Fig. 3.11(b)

18

Improve Efficiency

» the reference number is used in Modification records

e Implementation
» 01: control section name
» other: external reference symbols

e Example

19

Figure 3.12

4 LISTC 4112
5 ENDC 4124
PROGA
Ref No. Symbol Address Ref No. Symbol Address
1 PROGB 4063 1 PROGC 4063
LISTA 4040 2 LISTA 4040

20

