CULTURE MEDIA

TO, FIFTH SEMESTER STUDENTS PRESENTED BY, BHAVYASREE P S ASST PROFESSOR ON CONTRACT BASIS L F COLLEGE GURUVAYOOR

CULTURE MEDIA

Nutrient Medium – MS medium

- Medium depends upon the type of plant tissue or cell used for culture
- Generally nutrient consist of
- Inorganic salts (both micro & macro elements)
- \triangleright a carbon source (usually sucrose)
- > Vitamins (eg. nicotinic acid, thiamine, pyridoxine
- Amino acids (eg. arginine)
- ➤ Growth regulators (eg. auxins)
- An optimum pH (5.7) is also very important

Agar

- It is a polysaccharide.
- Obtained from red algae, such as gracillaria and gellidium.
- Gelling agent used to **soldify** liquid media.
- If liquid medium is used no agar is required.
- **8gm/L** is used.
- Provide solid surface for the growth of cells.
- If it is absent, tissues will submerge in the liquid medium and eventually die due to anoxia.

Organic constituents

- No autotrophic powers hence they require external source for carbon and energy.
- 20-30 gm/L is required.
- **Sucrose** is the standard media
- Glucose also used
- Fructose, yeast extract, malt extract, coconut water ..etc rarely used.

Inorganic constituents

- Micronutrients
- Macronutrients
- EDTA

Growth hormones

- Cytokinin, auxin, gibberellins
- Cytokinin promote RNA synthesis, induce cell division and cell differentiation and regulate growth.
- Adenin , kinetin, zeatin & benzyl adenin are widely used cytokinins.
- Auxins promote cell division, callus formation and root differentiation and stimulate shoot elongation.
- IAA, 2,4-dichlorophenoxy acetic acid
- Gibberellins promote callus growth and elongation of dwarf plants.

>Antibiotics :

Stertomycin,kanamycin Activated charcoal

> Other organic supplements :

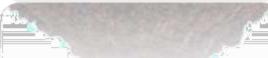
Protein, coconut milk, yest, malt extract, orange juice, and tomato juice

Growth regulators :

Auxins, cytokinins

≻Water :

Demineralized or distilled water


>Solidifying agents :

Agar, gelatin.

▶ pн adjusters :

5 - 6 it is considered to be optimum.

Preparation of medium

- What is **stock solution**?
- Stock solution is the concentrated solution of selected constitutions of the culture medium, prepared & stocked in advance for the preparation of the medium.
- Usually it is frozen or stored in a refrigerator and a portion of it is used for medium preparation.

- Culture medium is prepared by mixing appropriate quantities of stock solutions.
- 4 stock solutions are prepared
 - 1. Macronutrients
 - 2. Micronutrients
 - 3. Iron stock
 - 4. Organic nutrients except sucrose
 - Growth regulators are prepared as separate stock.
 - pH adjusted to 5.5 to 6
 - Solution is mixed and made up to 1L

- Sterilize the medium before the addition of growth regulators.
- Keep the culture tubes in **dark and cool places** to minimize degradation.
- Many sensitive plants are cultured in freshly prepared medium.
- Glass wares , tools, and components of medium are heat sterilized.
- Transfer hood or laminar air flow chamber, should be set up.
- To provide protection against microbial contamination, wiping with alcohol and use of UV light are necessary.

*** PREPARATION OF CULTURE MEDIA:**

- ✓ Stock solution 1 : MgSo4,KH2Po4,KNO3,NH4No3,CaCl2
- ✓ Stock solution 2 : H3B03,MnS04,ZnS04,CuS04,Cocl2
- ✓ Stock solution 3 : FeSo4, sodium EDTA
- ✓ Stock solution 4 : ionositol,thiamine,pyridamine,nicotinic acid,glycine

To prepare 1 liter of medium:

Take 50 ml of stock solution 1 + 5ml of stock solution 2 & 4 in a beaker. The stock solution 3 prepared separately in a other 450ml flask by adding double distilled water and heat with constant stirring. Mix two solutions and adjust PH to 5.5.

INORGANIC & ORGANIC SUPLLEMENTS

COUMPOUNDS	Mg/MI
NH4NO3	1,650.00
KNO3	1,900.00
CaCl2 (anhyd)	332.20
MgSO4 (anhyd)	180.70
KH2PO4	170.00
Na2EDTA	37.25
FeSO4.7H2O	27.80
H3BO3	6.20
MnSO4.H2O	16.90
MnSO4.H2O ZnSO4.H2O	16.90 5.37
ZnSO4.H2O	5.37
ZnSO4.H2O KI	5.37 0.83
ZnSO4.H2O KI Na2Mo4.2H2O	5.37 0.83 0.25

Basic requirements of Plant Tissue Culture:

- •Plant material
- •Equipments and Glasswares
- •Aseptic Condition
- •Washing and storage facilities
- •Media preparation room
- •Sterilization room
- •Nutrient medium
- •Transfer room
- •Culture room or incubators
- •Proper and optimum aeration
- •Well equipped observation or recording area