
Exception Handling

By,

Hitha Paulson

Assistant Professor, Dept. of Computer Science

LF College, Guruvayoor

Exception
 An exception is an abnormal condition that arises in a

code sequence at run time

 A Java exception is an object that describes an
exceptional condition that occurred in a piece of code

 When an exception arises, an exception object is created
and thrown in the method that caused the error

 Generated exception should caught and processed by the
code

 Exception can generated by

– Java Runtime System (Errors caused by violation of
language rules or by constraints of execution environment)

– Manually generated by user code (Used to report some error
condition to the caller of a method)

Exception Handling

 Step 1: Program statements that can generate error will
enclose within a try block

 Step 2: When exception occurs within try block, it will thrown

– System generated exceptions are automatically thrown by Java
Runtime

– Manual exceptions should explicitly thrown by throw statement

– Any exception thrown out of a method must be specified by using
throws clause

 Step 3: Generated exception should catch and handle by user
code

 Step 4: Any code that must execute after try block is put in
finally block

General Form

try

{

//block of code to monitor for errors

}

catch(ExceptionType1 exObj)

{

//exception handler for Exception type1

}

catch(ExceptionType2 exObj)

{

//exception handler for Exception type2

}

// ……….

finally

{

//block of code to be executed after try block ends

}

Exception Types

 All exception types are subclasses of the built-in
class Throwable

Throwable

Exception Error

RuntimeException

Exception hierarchy

Used for exceptional
condition that user
programs should catch

Also used to create
custom exception

Predefined Exception

Defines exceptions
that are not expected
to be caught under
normal circumstances
by your program

Eg: Stack overflow

Uncaught Exceptions

 When an exception is not handled by the user,
Java run-time system constructs a new
exception objects and throws

 Unhandled exception causes termination of
program execution

 Uncaught exception will handle by default
handler

 Default handler displays a string describing the
exception, prints a stack trace from which the
point the exception occurred

Using try and catch

 Exception handling helps to

– Fix the error

– Prevents the program from automatically terminating

– ie) to resolve the exceptional condition and to continue as if the error
had never happened

 When an exception occurs inside the try block, control will
transfer to catch block

 After executing catch block, execution continues with rest
of the statements after try..catch block

 try..catch forms a unit and all try should have atleast one
catch block

 Catch statement cannot catch an exception thrown by
another block of try..catch statement

Exception Object

 An exception object can directly print by
using println() method.

 A toString() method will automatically
invoke to get exception description from
exception object

Multiple catch Clauses
 In order to handle multiple exception generated from a

try block, a try block can preceed more than one catch
block

 Multiple catch block will contain different Exception
classes

 Exception sub-classes should come before exception
superclass

 When an exception is thrown,

– Each catch block will inspect to find a matching block for the
generated exception

– Statements in the matching catch block will execute

– Bypass rest of the catch blocks

– Execute statements in finally block and goes to the immediate
statement in the sequence

Nested try statements
 A try statement inside the block of another

try statement

 If an inner try block does not have a
matching catch block for a particular
exception
– The next try statement's catch block will inspected for

a match

– Above process continues until a match is found or
exited from nested try block

– If no matching catch found, default exception handler
will take over the duty

Throw statement
 Manually generated exceptions are thrown by using

throw statement

 General Format

– throw ThrowableInstance;

– ThrowableInstance is an instance of Throwable class or subclass
of Throwable

 Primitive types and non-Throwable classes cannot use as
exception

 Throwable object are created from parameter in catch
block or by using new operator

 Flow of execution stops after throw statement, nearest try

block is inspected to see matching catch block

Throws statement

 A method capable of causing an exception can
defined using throws clause in the method's
declaration

 It helps the caller of the method to guard themself
against the exception

 A throws clause lists the types of exceptions that a
method might throw

 Error, RuntimeException or any of their subclasses
are not used with throws

 All other exceptions that a method can throw must be
declared in the throws clause

General Format

Type method_name(parameter-list) throws
exception-list

{

//body of method

}

 exception-list is a comma separated list of the
exceptions that a method can throw

finally

 Finally creates a block of code that will be
executed after a try/catch block has
completed and before the code following
the try/catch block

 Finally block will execute whether or not an
exception is thrown

 Finally block is optional and each try
statement requires atleast one catch or
finally block

Self Study

 Built-in Exceptions

User defined exceptions

