Crystalline solids

By

Dr. Lali Thomas Kotturan

TYPES OF SOLIDS. BASED ON STRUCTURE

Crystalline solids Amorphous solids

Crystalline solids

Highly regular arrangement of atoms, ions, molecules - periodic (repeating)

Example:NaCl, KCl

Amorphous solids

No repeating pattern, only short range order, extensively disordered - non crystalline

Example:glasses

Types of crystalline solids

Metallic
Ionic
Extended covalent (or network) Molecular

Crystallinity

a repeating unit = unit cell

Lattice

is an infinite 1,2, or 3-Dimensional regular arrangement of points, each of which has identical surroundings.

- Any lattice can be described by placing lattice points at equivalent positions within each unit of the pattern.
- To recover original pattern we add the motif to each lattice point.

1-D pattern -------- Line
2-D patterns -------- Planar lattices
3-D pattern -------- space lattices

The Seven Crystal Systems

Bravais Lattices

Simple cubic

Simple tetragonal

Face-centered cubic

Body-centered tetragonal

Body-centered
cubic

Body-centered orthorhombic

Simple Monoclinic

Base-centered orthorhombic
 monoclinic

Face-centered orthorhombic

Triclinic

Bravais lattices of Cubic Lattice

- Simple cubic (also called primitive cubic), lattice points only at corners
- Body Centered Cubic (BCC), lattice points at corners and in middle of cube.
- Face Centered Cubic (FCC) lattice points at the corners and in the middle of each face

Unit Cells

How many lattice points "belong" to a unit cell ?

- Corners: The points at the corner of the cell are shared by 8 unit cells in total and is only "worth" $1 / 8$ to each cell.
- Faces : - these lattice points are shared by 2 cells, each one is "worth" 1/2 to each cell.
- Body : - this is the sole possesion of that cell, worth 1.
- Total number lattice points:

Primitive cubic $=8(1 / 8)=1$
FCC $\quad=6 \times 1 / 2+8(1 / 8)=4$
BCC $\quad=8(1 / 8)+1=2$

- Law of constancy of interfacial angles - Law of reciprocal indices

Lattice dimensions

- Directions

Miller Planes

(100)

(110)

(111)

(210)

Theoretical Density

Density=nM/NV n=No of particles

$\mathrm{M}=$ Atomic mass
$\mathrm{N}=$ Avagadro number
$\mathrm{V}=$ Volume of unit cell

How can we study their structures?

By x-ray diffraction

Bragg's Law

Incident rays
Reflected rays

X-Ray Diffraction

Debye

Close packing of spheres

The vacant spaces are called interstitial holes

Most ettective
(a) $a b a b$ - Closest packing

Top view

Top view

Side view
(b) $a b c a-$ Closest packing

Top view

Top view

Top view

Side view

Hexagonal Closest Packing

Cubic Closest Packing (FCC)

An atom in every fourth layer lies over an atom in the first layer.

Unit cell

- Each sphere is surrounded by 12 other spheres (6 in one plane, 3 above and 3 below).
- Coordination number: the number of spheres directly surrounding a central sphere.
- If unequally sized spheres are used, the smaller spheres are placed in the interstitial holes.

The Indicated Sphere Has 12 Nearest Neighbors

The Holes that Exist Among Closest Packed Uniform Spheres

(b)

Crystal Structure of Sodium Chloride

Face-centered cubic lattice.

- Two equivalent ways of defining unit cell:
$-\mathrm{Cl}^{-}$(larger) ions at the corners of the cell, or
$-\mathrm{Na}^{+}$(smaller) ions at the corners of the cell.

- The cation to anion ratio in a unit cell is the same for the crystal. In NaCl each unit cell contains same number of Na^{+}and Cl^{-}ions.
- Anions ccp (fcc). Radius $\mathrm{Na}+=1.02 \AA$, radius $\mathrm{Cl}-=$ $1.81 \AA ̊$; radius ratio $=0.563$.
- Therefore Na octahedral.
- 1 octahedral / anion therefore 100% octahedral sites are filled.
- Coordination \# $\mathrm{Na}=6$; coordination $\# \mathrm{Cl}=6$.

The NaCl Unit Cell Contains $4 \mathrm{Na}^{+}$and $4 \mathrm{Cl}^{-}$

Can you see them?????

$O=\mathrm{Cl}^{-}$
$O=\mathrm{Na}^{+}$

Three Cubic Unit Cells and the Corresponding Lattices

The Position of Tetrahedral Holes in a Face-Centered Cubic Unit Cell

(a)

(b)

(c)

Radius Ratio rules.

```
rcation }\mp@subsup{r}{\mathrm{ anion }}{}=0.225 0.41
    tetrahedral octahedral
```


Zincblende (Zinc sulfide, ZnS)

structure

- Anions ccp (fcc). Radius $\mathrm{Zn} 2+=0.6 \AA ̊$, radius S2- = $1.84 \AA ̊$; radius ratio $=0.33$ Æ Zn tetrahedral.
- Have 2 tetrahedral sites/ anion, therefore from formula of ZnS only 50% of the tetrahedral sites can be filled.
Coordination \# Zn = 4; coordination \# S = 4 .
- Which sites are filled ?: see picture below. Note the filling of diagonally opposite sites to maximize the cation-cation separations
"發

Cesium Chloride Structure

- CsCl : radius $\mathrm{Cs}+=1.74 \AA$, radius $\mathrm{Cl}-=1.81 \AA$ A radius ratio $=0.96 \nVdash$ predict cubic coordination.
All cubic sites are filled by Cs cations.
Coordination numbers: $\mathrm{Cs}=8 ; \mathrm{Cl}=8$.
Note Cs and Cl are in contact along the body diagonal

FLUORITE STRUCTURE (CaF2).

- Simple cubic arrangement of anions - 50\% cubic sites filled. e.g.CaF2
ionic radius $\mathrm{Ca} 2+=1.12 \AA \AA$; radius $\mathrm{F}-=1.31 \AA ̊$; radius ratio $=0.85$ \notin Ca2+ cubic coordination. One cubic site per F anion; from stoichiometry only 50% cubic sites filled by Ca cations. Arrangement of the filled cubic sites is such that the Ca-Ca distances are as large as possible (compare the Ca distribution to that of Zn in ZnS)
Coordination numbers: Ca2+ surrounded by 8 F- 's; Fsurrounded by 4 Ca2+'s.
Other examples: ZrO2

