## **Crystalline solids**

### By Dr. Lali Thomas Kotturan

## **TYPES OF SOLIDS.**

### **BASED ON STRUCTURE**

Crystalline solids Amorphous solids

### **Crystalline solids**

# Highly regular arrangement of atoms, ions, molecules - periodic (repeating)

Example:NaCl,KCl

## Amorphous solids

# No repeating pattern, only short range order, extensively disordered - non crystalline

Example:glasses

Types of crystalline solids

Metallic Ionic Extended covalent (or network) Molecular

### Crystallinity

### a repeating unit = <u>unit cell</u>



## Lattice

is an infinite 1,2, or 3-Dimensional regular arrangement of points, each of which has identical surroundings.  Any lattice can be described by placing lattice points at equivalent positions within each unit of the pattern.

• To recover original pattern we add the motif to each lattice point.

1-D pattern ----- Line
2-D patterns ----- Planar lattices
3-D pattern ----- space lattices

## **The Seven Crystal Systems**

a = b = cCubic а a = b = c**Rhombohedral** α=β=γ ≠ 90°  $\alpha=\beta=\gamma=90^\circ$  $a = b \neq c$ С Hexagonal  $\alpha = \beta = 90^{\circ}$ Tetragonal a=b≠c с  $v = 120^{\circ}$  $\alpha=\beta=\gamma=90^\circ$ <u>Monoclinic</u> a≠b≠c α=γ=90°≠β С Orthorhombic a≠b≠c b Triclinic  $\alpha = \beta = \gamma = 90^{\circ}$ α≠β≠γ≠90°



## **Bravais lattices of Cubic Lattice**

- Simple cubic (also called primitive cubic), lattice points only at corners
- Body Centered Cubic (BCC), lattice points at corners and in middle of cube.
- Face Centered Cubic (FCC) lattice points at the corners and in the middle of each face

## **Unit Cells**

## How many lattice points "belong" to a unit cell ?

- Corners: The points at the corner of the cell are shared by 8 unit cells in total and is only "worth" 1/8 to each cell.
- Faces : these lattice points are shared by 2 cells, each one is "worth" 1/2 to each cell.
- Body : this is the sole possesion of that cell, worth 1.
- Total number lattice points:

Primitive cubic = 8(1/8) = 1

FCC = 6x1/2 + 8(1/8) = 4

**BCC** = 8(1/8) + 1 = 2

- Law of constancy of interfacial angles
- Law of reciprocal indices

## Lattice dimensions

• Directions



## **Miller Planes**













## **Theoretical Density**

Density=nM/NV n=No of particles M=Atomic mass N=Avagadro number V=Volume of unit cell

### How can we study their structures ?

## By x-ray diffraction

## Bragg's Law



## **X-Ray Diffraction**





## Close packing of spheres

The vacant spaces are called interstitial holes



Most effective

#### (a) *abab* — Closest packing





Top view

Top view

Top view

Side view

## **Hexagonal Closest Packing**



## Cubic Closest Packing (FCC)



- Each sphere is surrounded by 12 other spheres (6 in one plane, 3 above and 3 below).
- Coordination number: the number of spheres directly surrounding a central sphere.
- If unequally sized spheres are used, the smaller spheres are placed in the interstitial holes.

## The Indicated Sphere Has 12 Nearest Neighbors



## The Holes that Exist Among Closest Packed Uniform Spheres



## Crystal Structure of Sodium Chloride

Face-centered cubic lattice.

- Two equivalent ways of defining unit cell:
   Cl<sup>-</sup> (larger) ions at the corners of the cell, or
  - Na<sup>+</sup> (smaller) ions at the corners of the cell.



- The cation to anion ratio in a unit cell is the same for the crystal. In NaCl each unit cell contains same number of Na<sup>+</sup> and Cl<sup>-</sup> ions.
- Anions ccp (fcc). Radius Na+ = 1.02Å, radius Cl- = 1.81Å; radius ratio = 0.563.
- Therefore <u>Na octahedral</u>.
- 1 octahedral / anion therefore <u>100% octahedral sites</u> <u>are filled</u>.
- Coordination # Na = 6; coordination # Cl = 6.

## The NaCl Unit Cell Contains 4 Na<sup>+</sup> and 4Cl<sup>-</sup> Can you see them?????





#### Three Cubic Unit Cells and the Corresponding Lattices



## The Position of Tetrahedral Holes in a Face-Centered Cubic Unit Cell



## **Radius Ratio rules**.

r<sub>cation</sub>/r<sub>anion</sub> = 0.225 0.414 tetrahedral octahedral

## Zincblende (Zinc sulfide, ZnS) structure

- Anions ccp (fcc). Radius Zn2+ = 0.6Å, radius S2- = 1.84Å; radius ratio = 0.33 Æ Zn tetrahedral.
- Have 2 tetrahedral sites/ anion, therefore from formula of ZnS only 50% of the tetrahedral sites can be filled.

Coordination # Zn = 4; coordination # S = 4.

• Which sites are filled ?: see picture below. Note the filling of diagonally opposite sites to maximize the cation-cation separations



## **Cesium Chloride Structure**

- CsCl: radius Cs+ = 1.74Å, radius Cl- = 1.81Å: radius ratio = 0.96 Æ predict cubic coordination.
  - All cubic sites are filled by Cs cations.
  - Coordination numbers: Cs = 8; Cl = 8.
  - Note Cs and Cl are in contact along the body diagonal



## FLUORITE STRUCTURE (CaF2).

• Simple cubic arrangement of anions - 50% cubic sites filled. e.g.CaF2

ionic radius Ca2+ = 1.12Å; radius F- = 1.31Å; radius ratio = 0.85 Æ Ca2+ cubic coordination. One cubic site per F anion; from stoichiometry only 50% cubic sites filled by Ca cations. Arrangement of the filled cubic sites is such that the Ca-Ca distances are as large as possible (compare the Ca distribution to that of Zn in ZnS)

Coordination numbers: Ca2+ surrounded by 8 F- 's; Fsurrounded by 4 Ca2+'s.

Other examples: ZrO2