

 Processes can execute concurrently

◦ May be interrupted at any time, partially
completing execution

 Concurrent access to shared data may result in
data inconsistencydata inconsistency

 Maintaining data consistency requires mechanisms
to ensure the orderly execution of cooperating
processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to
the consumer-producer problem that fills all the
buffers. We can do so by having an integer counter
that keeps track of the number of full buffers. that keeps track of the number of full buffers.
Initially, counter is set to 0. It is incremented by
the producer after it produces a new buffer and is
decremented by the consumer after it consumes a
buffer.

while (true) {
/* produce an item in next produced

*/

while (counter == BUFFER_SIZE) ;
/* do nothing */ /* do nothing */

buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

while (true) {
while (counter == 0) ; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

counter--;
/* consume the item in next consumed */ /* consume the item in next consumed */

}

 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

◦ Process may be changing common variables, updating table,
writing file, etc

◦ When one process in critical section, no other may be in its ◦ When one process in critical section, no other may be in its
critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section, then
remainder section

 General structure of process Pi

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the

A solution to the critical section problem must satisfy the following three re
quirements

selection of the processes that will enter the critical section next
cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n processes

do {

while (turn !=i);

critical section

turn = j;

remainder section

} while (true);

do {

while (turn !=j);

critical section
turn = i;

remainder section
} while (true); } while (true); } while (true);

Pi
Pj

Algorithm 1

Here the problem is even if a process not wishes to be in i
ts critical section, it gets a turn and blocks other processe
s to enter to their critical section

 Process Pi
repeat
flag[i] := true;
while (flag[j]);
critical section
flag [i] := false;
remainder section

 Process Pj
 repeat

flag[j]:= true;
while (flag[i]);
critical section
flag [j] := false;
remainder sectionremainder section

until false;

 Satisfies mutual exclusion, but not
progress requirement.

Algorithm 2

remainder section
until false;

Problem is both the processes flag m
ay be true and both of them may be i
n a waiting state

Peterson’s Solution

do {
flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

do {
flag[j] = true;

turn = i;

while (flag[i] && turn = = i);

critical section

flag[j] = false;

Algorithm 3

flag[i] = false;

remainder section

} while (true);

 Provable that the three CS requirement are met:
1. Mutual exclusion is preserved

Pi enters CS only if:
either flag[j] = false or turn = i

2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

remainder section

} while (true);

 Before entering its critical section, process
receives a number. Holder of the smallest number
enters the critical section.

Critical section for n processes

enters the critical section.

 If processes Pi and Pj receive the same number, if
i < j, then Pi is served first; else Pj is served first.

 Similar to a token system in Bakery

repeat
choosing[i] := true;
number[i] := max(number[0], number[1], …, number [n – 1])+1;
choosing[i] := false;
for (j := 0; j<n; j++)

{
while choosing[j];while choosing[j];
while (number[j] 0 and (number[j],j) < (number[i], i));

}
critical section

number[i] := 0;

remainder section
until false;

Structure of process Pi in Bakery Algorithm

((a,b) < (c,d)) if a < c or if a = c and b < d

 Many systems provide hardware support for implementing the
critical section code.

 All solutions below based on idea of locking

◦ Protecting critical regions via locks

 Uniprocessors – could disable interrupts

◦ Currently running code would execute without preemption◦ Currently running code would execute without preemption

◦ Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

◦ Either testandset Or swap instruction

do {
acquire lock

critical section
release lock release lock

remainder section
} while (TRUE);

lock=false // Global

The earlier two
implementations
wont support
bounded wait

 Synchronization tool that provides more

sophisticated ways for process to synchronize their

activities.

 Semaphore S is an integer variable that apart from Semaphore S is an integer variable that apart from

initialization can only be accessed through two

indivisible (atomic) operations

◦ wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S)
{

while (S <= 0)
; // busy wait

S--;
}}

 Definition of the signal() operation

signal(S)
{

S++;
}

 Counting semaphore – integer value can range over an
unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1
 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2
Create a semaphore “synch” initialized to 0 Create a semaphore “synch” initialized to 0

P1:
S1;
signal(synch);

P2:
wait(synch);
S2;

 The main disadvantage of earlier mutual
exclusion solutions are their busy waiting.

 Continual looping is a real problem.

 Even though this spinlocks wont make
context switches they are expected to be held
for short time.

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

◦ value (of type integer)
◦ pointer to next record in the list

 Two operations:
◦ block – place the process invoking the operation on the

appropriate waiting queueappropriate waiting queue
◦ wakeup – remove one of processes in the waiting queue and

place it in the ready queue
 typedef struct{

int value;
struct process *L;
} semaphore;

 Under the classical definition semaphores
cant be negative.

This implementation makes semaphore This implementation makes semaphore
negative and its magnitude is the number of
processes waiting on that semaphore.

 Must guarantee that no two processes can execute

the wait() and signal() on the same semaphore
at the same time

 Thus, the implementation becomes the critical section

problem where the wait and signal code are placed
in the critical section

◦ Could now have busy waiting in critical section
implementation

 But implementation code is short

 Deadlock – two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation – indefinite blocking

◦ A process may never be removed from the semaphore queue in which it is
suspended

 Classical problems used to test newly-
proposed synchronization schemes

◦ Bounded-Buffer Problem

◦ Readers and Writers Problem

◦ Dining-Philosophers Problem

 n buffers, each can hold one item
 Semaphore mutex initialized to the value 1
 Semaphore full initialized to the value 0
 Semaphore empty initialized to the value n

 The structure of the producer process

do {

...
/* produce an item in next_produced */

...

wait(empty); wait(empty);

wait(mutex);

...
/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

 The structure of the consumer process

Do {

wait(full);

wait(mutex);

...
/* remove an item from buffer to next_consumed */

... ...

signal(mutex);

signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

 A data set is shared among a number of concurrent
processes

◦ Readers – only read the data set; they do not perform
any updates

◦ Writers – can both read and write◦ Writers – can both read and write

 Problem – allow multiple readers to read at the same time

◦ Only one single writer can access the shared data at the
same time

 Mutex=1 wrt = 1 Readcount =0

