


 Processes can execute concurrently

◦ May be interrupted at any time, partially 
completing execution

 Concurrent access to shared data may result in 
data inconsistencydata inconsistency

 Maintaining data consistency requires mechanisms 
to ensure the orderly execution of cooperating 
processes



 Illustration of the problem:

Suppose that we wanted to provide a solution to 
the consumer-producer problem that fills all the 
buffers. We can do so by having an integer counter
that keeps track of the number of full buffers.  that keeps track of the number of full buffers.  
Initially, counter is set to 0. It is incremented by 
the producer after it produces a new buffer and is 
decremented by the consumer after it consumes a 
buffer.



while (true) {
/* produce an item in next produced 

*/ 

while (counter == BUFFER_SIZE) ; 
/* do nothing */ /* do nothing */ 

buffer[in] = next_produced; 
in = (in + 1) % BUFFER_SIZE; 
counter++; 

} 



while (true) {
while (counter == 0) ; /* do nothing */ 
next_consumed = buffer[out]; 
out = (out + 1) % BUFFER_SIZE; 

counter--; 
/* consume the item in next consumed */ /* consume the item in next consumed */ 

} 



 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}



 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

◦ Process may be changing common variables, updating table, 
writing file, etc

◦ When one process in critical section, no other may be in its ◦ When one process in critical section, no other may be in its 
critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in 
entry section, may follow critical section with exit section, then 
remainder section



 General structure of process Pi  



1.   Mutual Exclusion - If process Pi is executing in its critical section, 
then no other processes can be executing in their critical sections

2.   Progress - If no process is executing in its critical section and there 
exist some processes that wish to enter their critical section, then the 

A solution to the critical section problem must satisfy the following three re
quirements

selection of the processes that will enter the critical section next 
cannot be postponed indefinitely

3.  Bounded Waiting - A bound must exist on the number of times that 
other processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and before 
that request is granted

 Assume that each process executes at a nonzero speed 

 No assumption concerning relative speed of the n processes



do { 

while (turn !=i); 

critical section 

turn = j; 

remainder section 

} while (true); 

do { 

while (turn !=j); 

critical section 
turn = i; 

remainder section 
} while (true); } while (true); } while (true); 

Pi
Pj

Algorithm 1

Here the problem is even if a process not wishes to be in i
ts critical section, it gets a turn and blocks other processe
s to enter to their critical section 



 Process Pi
repeat
flag[i] := true;
while (flag[j]);
critical section
flag [i] := false;
remainder section

 Process Pj
 repeat

flag[j]:= true;
while (flag[i]);
critical section
flag [j] := false;
remainder sectionremainder section

until false;

 Satisfies mutual exclusion, but not 
progress requirement.

Algorithm 2

remainder section
until false;

Problem is both the processes flag m
ay be true and both of them may be i
n a waiting state 



Peterson’s Solution

do { 
flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j); 

critical section 

flag[i] = false; 

do { 
flag[j] = true; 

turn = i; 

while (flag[i] && turn = = i); 

critical section 

flag[j] = false; 

Algorithm 3

flag[i] = false; 

remainder section 

} while (true); 

 Provable that the three  CS requirement are met:
1.   Mutual exclusion is preserved

Pi enters CS only if:
either flag[j] = false or turn = i

2.   Progress requirement is satisfied
3.   Bounded-waiting requirement is met

remainder section 

} while (true); 



 Before entering its critical section, process 
receives a number. Holder of the smallest number 
enters the critical section.

Critical section for n processes

enters the critical section.

 If processes Pi and Pj receive the same number, if 
i < j, then Pi is served first; else Pj is served first.

 Similar to a token system in Bakery



repeat
choosing[i] := true;
number[i] := max(number[0], number[1], …, number [n – 1])+1;
choosing[i] := false;
for (j := 0; j<n; j++)

{
while choosing[j];while choosing[j];
while (number[j]  0 and (number[j],j) < (number[i], i));

}
critical section

number[i] := 0;

remainder section
until false;

Structure of process Pi in Bakery Algorithm

((a,b) < (c,d)) if a < c or if a = c and b < d



 Many systems provide hardware support for implementing the 
critical section code.

 All solutions below based on idea of locking

◦ Protecting critical regions via locks

 Uniprocessors – could disable interrupts

◦ Currently running code would execute without preemption◦ Currently running code would execute without preemption

◦ Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

◦ Either testandset  Or swap instruction



do { 
acquire lock 

critical section 
release lock release lock 

remainder section 
} while (TRUE); 



lock=false // Global





The earlier two    
implementations 
wont support 
bounded wait



 Synchronization tool that provides more 

sophisticated ways for process to synchronize their 

activities.

 Semaphore S is an integer variable that apart from  Semaphore S is an integer variable that apart from 

initialization can only be accessed through  two 

indivisible (atomic) operations

◦ wait() and signal()

 Originally called P() and V()



 Definition of  the wait() operation

wait(S) 
{ 

while (S <= 0)
; // busy wait

S--;
}}

 Definition of  the signal() operation

signal(S)
{ 

S++;
}



 Counting semaphore – integer value can range over an 
unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1
 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2
Create a semaphore “synch” initialized to 0 Create a semaphore “synch” initialized to 0 

P1:
S1;
signal(synch);

P2:
wait(synch);
S2;



 The main disadvantage of earlier  mutual 
exclusion solutions are their busy waiting.

 Continual looping is a real problem.

 Even though this spinlocks wont make 
context switches they are expected to be held 
for short time.



 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

◦ value (of type integer)
◦ pointer to next record in the list

 Two operations:
◦ block – place the process invoking the operation on the 

appropriate waiting queueappropriate waiting queue
◦ wakeup – remove one of processes in the waiting queue and 

place it in the ready queue
 typedef struct{ 

int value; 
struct process *L; 
} semaphore; 





 Under the classical definition semaphores 
cant be negative.

This implementation makes semaphore  This implementation makes semaphore 
negative and its magnitude is the number of 
processes waiting on that semaphore.



 Must guarantee that no two processes can execute  

the wait() and signal() on the same semaphore 
at the same time

 Thus, the implementation becomes the critical section 

problem where the wait and signal code are placed 
in the critical section

◦ Could now have busy waiting in critical section 
implementation

 But implementation code is short



 Deadlock – two or more processes are waiting indefinitely for an event 
that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

 Starvation – indefinite blocking  

◦ A process may never be removed from the semaphore queue in which it is 
suspended



 Classical problems used to test newly-
proposed synchronization schemes

◦ Bounded-Buffer Problem

◦ Readers and Writers Problem

◦ Dining-Philosophers Problem



 n buffers, each can hold one item
 Semaphore mutex initialized to the value 1
 Semaphore full initialized to the value 0
 Semaphore empty initialized to the value n



 The structure of the producer process

do { 

...
/* produce an item in next_produced */ 

... 

wait(empty); wait(empty); 

wait(mutex); 

...
/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);



 The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...
/* remove an item from buffer to next_consumed */ 

... ... 

signal(mutex); 

signal(empty); 

...
/* consume the item in next consumed */ 

...
} while (true); 



 A data set is shared among a number of concurrent 
processes

◦ Readers – only read the data set; they do not perform 
any updates

◦ Writers   – can both read and write◦ Writers   – can both read and write

 Problem – allow multiple readers to read at the same time

◦ Only one single writer can access the shared data at the 
same time

 Mutex=1 wrt  = 1 Readcount =0










