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Recursion: Basic idea

 We have a bigger problem whose solution is  
difficult to find

 We divide/decompose the problem into smaller  
(sub) problems




Keep on decomposing until we reach to the smallest
sub-problem (base case) for which a solution is
known or easy to find

Then go back in reverse order and build upon the
solutions of the sub-problems

 Recursion is applied when the solution of a problem
depends on the solutions to smaller instances of the same
problem



Recursive Function

 A function which calls itself

int factorial ( int n ) {

if ( n == 0) // base case

return 1;

else // general/ recursive case

return n * factorial ( n - 1 );

}



Finding a recursive solution

 Each successive recursive call should bring you

closer to a situation in which the answer is

known (cf. n-1 in the previous slide)

 A case for which the answer is known (and can

be expressed without recursion) is called a base

case

 Each recursive algorithm must have at least

one base case, as well as the general recursive

case



Recursion vs. Iteration: Computing N!

The factorial of a positive integer n, denoted n!, is

defined as the product of the integers from 1 to n. For

example, 4! = 4·3·2·1 = 24.

 Iterative Solution

 Recursive Solution



Recursion: Do we really need it?

 In some programming languages recursion is  

imperative







For example, in declarative/logic languages (LISP,  

Prolog etc.)

Variables can’t be updated more than once, so no  

looping – (think, why no looping?)

Heavy backtracking



Recursion in Action: factorial(n)

factorial (5) = 5 x factorial (4)

= 5 x (4 x factorial (3))

= 5 x (4 x (3 x factorial (2)))

= 5 x (4 x (3 x (2 x factorial (1))))

= 5 x (4 x (3 x (2 x (1 x factorial (0)))))

= 5 x (4 x (3 x (2 x (1 x 1))))

= 5 x (4 x (3 x (2 x 1)))

= 5 x (4 x (3 x 2))

= 5 x (4 x 6)

= 5 x 24

Base case arrived  
Some concept  
from elementary  
maths: Solve the  
inner-most  
bracket, first, and  
then go outward

= 120



How to write a recursive function?

 Determine the size factor (e.g. n in factorial(n))

 Determine the base case(s)

the one for which you know the answer (e.g. 0! = 1)

 Determine the general case(s)

the one where the problem is expressed as a smaller  

version of itself (must converge to base case)

 Verify the algorithm

use the "Three-Question-Method” – next slide



Three-Question Verification Method

•

1. The Base-Case Question

Is there a non-recursive way out of the function,
and does the routine work correctly for this "base"
case? (cf. if (n == 0) return 1)

2. The Smaller-Caller Question

Does each recursive call to the function involve a
smaller case of the original problem, leading
towards the base case? (cf. factorial(n-1))

The General-Case Question

Assuming that the recursive call(s) work  
correctly, does the whole function work correctly?



Linear Recursion

 The simplest form of recursion is linear
recursion, where a method is defined so that it
makes at most one recursive call each time it is
invoked

 This type of recursion is useful when we view
an algorithmic problem in terms of a first or
last element plus a remaining set that has the
same structure as the original set



Summing the Elements of an Array

 We can solve this summation problem using linear  
recursion by observing that the sum of all n integers in  
an array A is:

 Equal to A[0], if n = 1, or

 The sum of the first n − 1 integers in A plus the last element

int LinearSum(int A[], n){  

if n = 1 then

return A[0];  

else

return A[n-1] + LinearSum(A, n-1)

}



Analyzing Recursive Algorithms  

using Recursion Traces
 Recursion trace for an execution of LinearSum(A,n)

with input parameters A = [4,3,6,2,5] and n = 5



Linear recursion: Reversing an Array

 Swap 1st and last elements, 2nd and second to last, 3rd 

and third to last, and so on

 If an array contains only one element no need to  

swap (Base case)

 Update i and j in such a way that they converge to  

the base case (i = j)

5 10 18 30 45 50 60 65 70 80

i j



Linear recursion: Reversing an Array

void reverseArray(int A[], i, j){  

if (i < j){

int temp = A[i];  

A[i] = A[j];

A[j] = temp;

reverseArray(A, i+1, j-1)

}

// in base case, do nothing

}



Linear recursion: run-time analysis

 Time complexity of linear recursion is

proportional to the problem size

 Normally, it is equal to the number of times the  

function calls itself

 In terms of Big-O notation time complexity of  

a linear recursive function/algorithm is O(n)



Recursion and stack management

 A quick overview of stack

 Last in first out (LIFO) data structure

 Push operation adds new element at the top

 Pop operation removes the top element



What happens when a function is called?

 The rest of the execution in “caller” is  

suspended

 An activation record is created on  

stack, containing

Return address (in the caller code)

Current (suspended) status of the caller

 Control is transferred to the “called”

function

 The called function is executed

 Once the called function finishes its  

execution, the activation record is  

popped of, and the suspended activity  

resumes

int a(int w)
{

return w+w;
}

int b(int x)
{

int z,y;
z = a(x) + y;
return z;

}



What happens when a recursive  

function is called?

 Except the fact that the calling and called
functions have the same name, there is really no
difference between recursive and non-recursive
calls

int f(int x){

{

int y;  

if(x==0)

return 1;  

else{

y = 2 * f(x-1);  

return y+1;
}

}



=f(3)

=f(2)

=f(1)

2*f(2)

2*f(1)

2*f(0)

=f(0)

int f(int x){
{

int y;  
if(x==0)

return 1;  
else{
y = 2 * f(x-1);  
return y+1;

}
}

Recursion:  

Run-time  

stack tracing

Let the function is

called with parameter

value 3, i.e. f(3)



Recursion and stack management

 A quick overview of stack

 Last in first out (LIFO) data structure

 Push operation adds new element at the top

 Pop operation removes the top element



Binary recursion

 Binary recursion occurs whenever there are two

recursive calls for each non-base case

 These two calls can, for example, be used to  
solve two similar halves of some problem

 For example, the LinearSum program can be  
modified as:

recursively summing the elements in the first half  
of the Array

recursively summing the elements in the second  
half of the Array

adding these two sums/values together



 A is an array, i is initialised as 0, and n is initialised as array size

int BinarySum(int A[], int i, int n){

// base caseif (n == 1)then  

return A[i];

else // recursive case I

Binary Recursion: Array Sum

return BinarySum(A, i, n/2) + BinarySum(A, i+n/2, n/2);

}
Recursion trace for BinarySum, for n = 8 [Solve step-by-step]



 A i s an array, key is theelement to
be found, LI is  initialised as 0, and HI is 

initialised as array size - 1

int BinarySearch(int key, int A[], int LI, int HI){

// key does not exist

// base case

if (LI > HI)then  

return -1;

if (key == A[mid])  

return mid;

else if (key < A[mid]) // recursive case I

BinarySearch(key, A, LI, mid - 1);

else // recursive case II  

BinarySearch(key, A, mid + 1, HI);

}

Binary Search using Binary Recursion



Tail Recursion

An algorithm uses tail recursion if it uses linear

recursion and the algorithm makes a recursive

call as its very last operation

For instance, our reverseArray algorithm is an

example of tail recursion

Tail recursion can easily be replaced by iterative

code

 Embed the recursive code in a loop

 Remove the recursive call statement



Efficiency of recursion

 Recursion is not efficient because:

It may involve much more operations than necessary

(Time complexity)

It uses the run-time stack, which involves pushing and

popping a lot of data in and out of the stack, some of it

may be unnecessary (Time and Space complexity)

 Both the time and space complexities of

recursive functions may be considerably higher  

than their iterative alternatives



Recursion: general remarks

 Use recursion when:

The depth of recursive calls is relatively “shallow”  

compared to the size of the problem. (factorial is deep)

The recursive version does about the same amount of  

work as the non-recursive version. (fibonacci does more  

work)

The recursive version is shorter and simpler than the  

non-recursive solution (towers of hanoi)



Home work

Write a recursive function to compute first N  

Fibonacci numbers. Test and trace for N = 6

1 1 2 3 5 8

Write a recursive function to compute power of  

a number (xn). Test and trace for 45.



Outlook

Next week, we’ll discuss recursive sort


