Subject: Data structures using C Topic: Recursion

LISNA THOMAS

ACADEMIC YEAR:2020-21

Recursion: Basic idea

θ We have a bigger problem whose solution is difficult to find
θ We divide/decompose the problem into smaller (sub) problems

* Keep on decomposing until we reach to the smallest sub-problem (base case) for which a solution is known or easy to find
* Then go back in reverse order and build upon the solutions of the sub-problems
θ Recursion is applied when the solution of a problem depends on the solutions to smaller instances of the same problem

Recursive Function

θ A function which calls itself

Finding a recursive solution

θ Each successive recursive call should bring you closer to a situation in which the answer is known (cf. n-1 in the previous slide)
θ A case for which the answer is known (and can be expressed without recursion) is called a base case
θ Each recursive algorithm must have at least one base case, as well as the general recursive case

Recursion vs. Iteration: Computing N!

θ The factorial of a positive integer n, denoted $n!$, is defined as the product of the integers from 1 to n. For example, $4!=4 \cdot 3 \cdot 2 \cdot 1=24$.

- Iterative Solution

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1) \cdot(n-2) \cdots \cdot 3 \cdot 2 \cdot 1 & \text { if } n \geq 1\end{cases}
$$

- Recursive Solution

$$
\text { factorial }(n)= \begin{cases}1 & \text { if } n=0 \\ n \cdot \text { factorial }(n-1) & \text { if } n \geq 1\end{cases}
$$

Recursion: Do we really need it?

θ In some programming languages recursion is imperative

* For example, in declarative/logic languages (LISP, Prolog etc.)
* Variables can't be updated more than once, so no looping - (think, why no looping?)
* Heavy backtracking

Recursion in Action: factorial(n)

```
factorial (5) = 5 x factorial (4)
    = 5 x (4 x factorial (3))
    = 5 x (4 x (3 x factorial (2)))
    = 5 x (4 x (3 x (2 x factorial (1))))
    = 5 x (4 x (3 x (2 x (1 x factorial (0)))))
    = 5 x (4 x (3 x (2 x (1 x 1))))
    =5 x (4 x (3 x (2 x 1)))
    = 5 x (4 x (3 x 2))
    =5 x (4 x 6)
    =5 x 24
    = 120
```


How to write a recursive function?

θ Determine the size factor (e.g. n in factorial(n))
θ Determine the base case(s)
क the one for which you know the answer (e.g. $0!=1$)
θ Determine the general case(s)

* the one where the problem is expressed as a smaller version of itself (must converge to base case)
θ Verify the algorithm
\& use the "Three-Question-Method" - next slide

Three-Question Verification Method

1. The Base-Case Question

Is there a non-recursive way out of the function, and does the routine work correctly for this "base" case? (cf. if ($\mathrm{n}==0$) return 1)
2. The Smaller-Caller Question

Does each recursive call to the function involve a smaller case of the original problem, leading towards the base case? (cf. factorial (n-1))

- The General-Case Question

Assuming that the recursive call(s) work correctly, does the whole function work correctly?

Linear Recursion

θ The simplest form of recursion is linear recursion, where a method is defined so that it makes at most one recursive call each time it is invoked
θ This type of recursion is useful when we view an algorithmic problem in terms of a first or last element plus a remaining set that has the same structure as the original set

Summing the Elements of an Array

$\theta \quad$ We can solve this summation problem using linear recursion by observing that the sum of all n integers in an array A is:

* Equal to $A[0]$, if $n=1$, or
* The sum of the first $n-1$ integers in A plus the last element

```
int LinearSum(int A[], n){
    if n=1 then
    return A[0];
    else
    return A[n-1] + LinearSum(A, n-1)
}
```


Analyzing Recursive Algorithms using Recursion Traces

θ Recursion trace for an execution of $\operatorname{LinearSum}(A, n)$ with input parameters $A=[4,3,6,2,5]$ and $n=5$

Linear recursion: Reversing an Array

θ Swap $1^{\text {stand }}$ last elements, $2^{\text {nd }}$ and second to last, $3^{\text {rd }}$ and third to last, and so on
θ If an array contains only one element no need to swap (Base case)

θ Update i and j in such a way that they converge to the base case $(\mathrm{i}=\mathrm{j})$

Linear recursion: Reversing an Array

```
void reverseArray(int A[], i, j){
    if (i < j){
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
    reverseArray(A, i+1, j-1)
    }
    // in base case, do nothing
}
```


Linear recursion: run-time analysis

θ Time complexity of linear recursion is proportional to the problem size

* Normally, it is equal to the number of times the function calls itself
θ In terms of Big-O notation time complexity of a linear recursive function/algorithm is $O(n)$

Recursion and stack management

θ A quick overview of stack

* Last in first out (LIFO) data structure
\approx Push operation adds new element at the top
* Pop operation removes the top element

What happens when a function is called?

θ The rest of the execution in "caller" is suspended
θ An activation record is created on stack, containing

- Return address (in the caller code)
* Current (suspended) status of the caller
θ Control is transferred to the function
θ The called function is executed
θ Once the called function finishes its execution, the activation record is popped of, and the suspended activity resumes

What happens when a recursive function is called?

θ Except the fact that the calling and called functions have the same name, there is really no difference between recursive and non-recursive calls

```
int f(int x) {
{
    int y;
    if(x==0)
        return 1;
    else{
        y = 2 * £ (x-1);
        return y+1;
    }
}
```


Recursion: Run-time stack tracing

Let the function is called with parameter value 3, i.e. f(3)
int f(int x) \{
\{
int Y;
if ($x==0$)
return 1;
else\{
$y=2 * f(x-1) ;$
return $y+1$;
\}
\}
value returned by call is 15

Recursion and stack management

θ A quick overview of stack

* Last in first out (LIFO) data structure
\approx Push operation adds new element at the top
* Pop operation removes the top element

Binary recursion

θ Binary recursion occurs whenever there are two recursive calls for each non-base case
θ These two calls can, for example, be used to solve two similar halves of some problem
θ For example, the LinearSum program can be modified as:
\oplus recursively summing the elements in the first half of the Array
*recursively summing the elements in the second half of the Array
\&adding these two sums/values together

Binary Recursion: Array Sum

θ A is an array, i is initialised as 0 , and n is initialised as array size int BinarySum (int A[], int i, int n) \{ if ($\mathrm{n}==1$) then
// base case return A[i];

```
else
// recursive case I
    return BinarySum(A, i, n/2) + BinarySum(A, i+n/2, n/2);
```

${ }^{\mathrm{s}} \theta$ Recursion trace for BinarySum, for $\mathrm{n}=8$ [Solve step-by-step]

Binary Search using Binary Recursion

```
A i s an array, key is theelement to
be found, LI is initialised as 0, and HI is
initialised as array size - 1
int BinarySearch(int key, int A[], int LI, int HI){
    if (LI > HI)then // key does not exist
        return -1;
    if (key == A[mid]) // base case
    return mid;
    else if (key < A[mid]) // recursive case I
    BinarySearch(key, A, LI, mid - 1);
    else // recursive case II
    BinarySearch(key, A, mid + 1, HI);
```


Tail Recursion

θ An algorithm uses tail recursion if it uses linear recursion and the algorithm makes a recursive call as its very last operation
θ For instance, our reverseArray algorithm is an example of tail recursion
θ Tail recursion can easily be replaced by iterative code

* Embed the recursive code in a loop
\& Remove the recursive call statement

Efficiency of recursion

θ Recursion is not efficient because:

- It may involve much more operations than necessary (Time complexity)
- It uses the run-time stack, which involves pushing and popping a lot of data in and out of the stack, some of it may be unnecessary (Time and Space complexity)
θ Both the time and space complexities of recursive functions may be considerably higher than their iterative alternatives

Recursion: general remarks

θ Use recursion when:
*The depth of recursive calls is relatively "shallow" compared to the size of the problem. (factorial is deep)
\& The recursive version does about the same amount of work as the non-recursive version. (fibonacci does more work)
$\%$ The recursive version is shorter and simpler than the non-recursive solution (towers of hanoi)

Home work

θ Write a recursive function to compute first N Fibonacci numbers. Test and trace for $\mathrm{N}=6$ $\begin{array}{llllll}1 & 1 & 2 & 3 & 5 & 8\end{array}$
θ Write a recursive function to compute power of a number (x^{n}). Test and trace for 4^{5}.

Outlook

Next week, we'll discuss recursive sort

