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Recursion: Basic idea

 We have a bigger problem whose solution is  
difficult to find

 We divide/decompose the problem into smaller  
(sub) problems




Keep on decomposing until we reach to the smallest
sub-problem (base case) for which a solution is
known or easy to find

Then go back in reverse order and build upon the
solutions of the sub-problems

 Recursion is applied when the solution of a problem
depends on the solutions to smaller instances of the same
problem



Recursive Function

 A function which calls itself

int factorial ( int n ) {

if ( n == 0) // base case

return 1;

else // general/ recursive case

return n * factorial ( n - 1 );

}



Finding a recursive solution

 Each successive recursive call should bring you

closer to a situation in which the answer is

known (cf. n-1 in the previous slide)

 A case for which the answer is known (and can

be expressed without recursion) is called a base

case

 Each recursive algorithm must have at least

one base case, as well as the general recursive

case



Recursion vs. Iteration: Computing N!

The factorial of a positive integer n, denoted n!, is

defined as the product of the integers from 1 to n. For

example, 4! = 4·3·2·1 = 24.

 Iterative Solution

 Recursive Solution



Recursion: Do we really need it?

 In some programming languages recursion is  

imperative







For example, in declarative/logic languages (LISP,  

Prolog etc.)

Variables can’t be updated more than once, so no  

looping – (think, why no looping?)

Heavy backtracking



Recursion in Action: factorial(n)

factorial (5) = 5 x factorial (4)

= 5 x (4 x factorial (3))

= 5 x (4 x (3 x factorial (2)))

= 5 x (4 x (3 x (2 x factorial (1))))

= 5 x (4 x (3 x (2 x (1 x factorial (0)))))

= 5 x (4 x (3 x (2 x (1 x 1))))

= 5 x (4 x (3 x (2 x 1)))

= 5 x (4 x (3 x 2))

= 5 x (4 x 6)

= 5 x 24

Base case arrived  
Some concept  
from elementary  
maths: Solve the  
inner-most  
bracket, first, and  
then go outward

= 120



How to write a recursive function?

 Determine the size factor (e.g. n in factorial(n))

 Determine the base case(s)

the one for which you know the answer (e.g. 0! = 1)

 Determine the general case(s)

the one where the problem is expressed as a smaller  

version of itself (must converge to base case)

 Verify the algorithm

use the "Three-Question-Method” – next slide



Three-Question Verification Method

•

1. The Base-Case Question

Is there a non-recursive way out of the function,
and does the routine work correctly for this "base"
case? (cf. if (n == 0) return 1)

2. The Smaller-Caller Question

Does each recursive call to the function involve a
smaller case of the original problem, leading
towards the base case? (cf. factorial(n-1))

The General-Case Question

Assuming that the recursive call(s) work  
correctly, does the whole function work correctly?



Linear Recursion

 The simplest form of recursion is linear
recursion, where a method is defined so that it
makes at most one recursive call each time it is
invoked

 This type of recursion is useful when we view
an algorithmic problem in terms of a first or
last element plus a remaining set that has the
same structure as the original set



Summing the Elements of an Array

 We can solve this summation problem using linear  
recursion by observing that the sum of all n integers in  
an array A is:

 Equal to A[0], if n = 1, or

 The sum of the first n − 1 integers in A plus the last element

int LinearSum(int A[], n){  

if n = 1 then

return A[0];  

else

return A[n-1] + LinearSum(A, n-1)

}



Analyzing Recursive Algorithms  

using Recursion Traces
 Recursion trace for an execution of LinearSum(A,n)

with input parameters A = [4,3,6,2,5] and n = 5



Linear recursion: Reversing an Array

 Swap 1st and last elements, 2nd and second to last, 3rd 

and third to last, and so on

 If an array contains only one element no need to  

swap (Base case)

 Update i and j in such a way that they converge to  

the base case (i = j)

5 10 18 30 45 50 60 65 70 80

i j



Linear recursion: Reversing an Array

void reverseArray(int A[], i, j){  

if (i < j){

int temp = A[i];  

A[i] = A[j];

A[j] = temp;

reverseArray(A, i+1, j-1)

}

// in base case, do nothing

}



Linear recursion: run-time analysis

 Time complexity of linear recursion is

proportional to the problem size

 Normally, it is equal to the number of times the  

function calls itself

 In terms of Big-O notation time complexity of  

a linear recursive function/algorithm is O(n)



Recursion and stack management

 A quick overview of stack

 Last in first out (LIFO) data structure

 Push operation adds new element at the top

 Pop operation removes the top element



What happens when a function is called?

 The rest of the execution in “caller” is  

suspended

 An activation record is created on  

stack, containing

Return address (in the caller code)

Current (suspended) status of the caller

 Control is transferred to the “called”

function

 The called function is executed

 Once the called function finishes its  

execution, the activation record is  

popped of, and the suspended activity  

resumes

int a(int w)
{

return w+w;
}

int b(int x)
{

int z,y;
z = a(x) + y;
return z;

}



What happens when a recursive  

function is called?

 Except the fact that the calling and called
functions have the same name, there is really no
difference between recursive and non-recursive
calls

int f(int x){

{

int y;  

if(x==0)

return 1;  

else{

y = 2 * f(x-1);  

return y+1;
}

}



=f(3)

=f(2)

=f(1)

2*f(2)

2*f(1)

2*f(0)

=f(0)

int f(int x){
{

int y;  
if(x==0)

return 1;  
else{
y = 2 * f(x-1);  
return y+1;

}
}

Recursion:  

Run-time  

stack tracing

Let the function is

called with parameter

value 3, i.e. f(3)



Recursion and stack management

 A quick overview of stack

 Last in first out (LIFO) data structure

 Push operation adds new element at the top

 Pop operation removes the top element



Binary recursion

 Binary recursion occurs whenever there are two

recursive calls for each non-base case

 These two calls can, for example, be used to  
solve two similar halves of some problem

 For example, the LinearSum program can be  
modified as:

recursively summing the elements in the first half  
of the Array

recursively summing the elements in the second  
half of the Array

adding these two sums/values together



 A is an array, i is initialised as 0, and n is initialised as array size

int BinarySum(int A[], int i, int n){

// base caseif (n == 1)then  

return A[i];

else // recursive case I

Binary Recursion: Array Sum

return BinarySum(A, i, n/2) + BinarySum(A, i+n/2, n/2);

}
Recursion trace for BinarySum, for n = 8 [Solve step-by-step]



 A i s an array, key is theelement to
be found, LI is  initialised as 0, and HI is 

initialised as array size - 1

int BinarySearch(int key, int A[], int LI, int HI){

// key does not exist

// base case

if (LI > HI)then  

return -1;

if (key == A[mid])  

return mid;

else if (key < A[mid]) // recursive case I

BinarySearch(key, A, LI, mid - 1);

else // recursive case II  

BinarySearch(key, A, mid + 1, HI);

}

Binary Search using Binary Recursion



Tail Recursion

An algorithm uses tail recursion if it uses linear

recursion and the algorithm makes a recursive

call as its very last operation

For instance, our reverseArray algorithm is an

example of tail recursion

Tail recursion can easily be replaced by iterative

code

 Embed the recursive code in a loop

 Remove the recursive call statement



Efficiency of recursion

 Recursion is not efficient because:

It may involve much more operations than necessary

(Time complexity)

It uses the run-time stack, which involves pushing and

popping a lot of data in and out of the stack, some of it

may be unnecessary (Time and Space complexity)

 Both the time and space complexities of

recursive functions may be considerably higher  

than their iterative alternatives



Recursion: general remarks

 Use recursion when:

The depth of recursive calls is relatively “shallow”  

compared to the size of the problem. (factorial is deep)

The recursive version does about the same amount of  

work as the non-recursive version. (fibonacci does more  

work)

The recursive version is shorter and simpler than the  

non-recursive solution (towers of hanoi)



Home work

Write a recursive function to compute first N  

Fibonacci numbers. Test and trace for N = 6

1 1 2 3 5 8

Write a recursive function to compute power of  

a number (xn). Test and trace for 45.



Outlook

Next week, we’ll discuss recursive sort


