Subject: Theory Of Computation Topic: CFG

LISNA THOMAS ACADEMIC YEAR:2020-21

CIS 361

Introduction

•Finite Automata **accept** all regular languages and only regular languages

•Many simple languages are non regular:

-
$$\{a^nb^n : n = 0, 1, 2, ...\}$$

- {w : w a is palindrome}

and there is no finite automata that accepts them.

• context-free languages are a larger class of languages that encompasses all regular languages and many others, including the two above.

Context-Free Grammars

• Languages that are **generated** by context-free grammars are context-free languages

• Context-free grammars are more expressive than finite automata: if a language L is **accepted** by a finite automata then L can be **generated** by a context-free grammar

• Beware: The converse is NOT true

Context-Free Grammar

Definition. A context-free grammar is a 4-tuple (Σ , NT, R, S), where:

- Σ is an alphabet (each character in Σ is called **terminal**)
- NT is a set (each element in NT is called **nonterminal**)
- R, the set of rules, is a subset of $NT \times (\Sigma \cup NT)^*$

If $(\alpha,\beta) \in \mathbb{R}$, we write production $\alpha \rightarrow \beta$

β is called a **sentential form**

• S, the start symbol, is one of the symbols in NT

CFGs: Alternate Definition

many textbooks use different symbols and terms to describe CFG's

 $G = (V, \Sigma, P, S)$

- a finite set V = variables Σ = alphabet or terminals a finite set
- P = productions
- S = start variable

a finite set

S∈V

Productions' form, where $A \in V$, $\alpha \in (V \cup \Sigma)^*$: • $A \rightarrow \alpha$

Definition. v is **one-step derivable** from u, written $u \Rightarrow v$, if:

• $u = x\alpha z$

•
$$v = x\beta z$$

• $\alpha \rightarrow \beta$ in R

Definition. v is **derivable** from u, written $u \Rightarrow^* v$, if: There is a chain of one-derivations of the form:

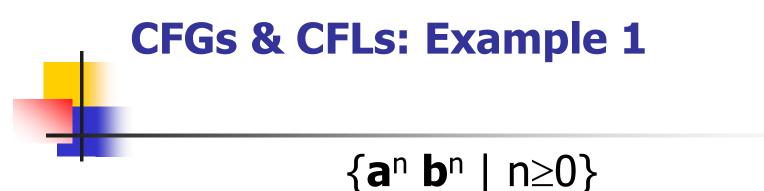
$$\mathbf{u} \Longrightarrow \mathbf{u}_1 \Longrightarrow \mathbf{u}_2 \Longrightarrow \ldots \Longrightarrow \mathbf{v}$$

Context-Free Languages

Definition. Given a context-free grammar $G = (\Sigma, NT, R, S)$, the **language generated** or derived from G is the set:

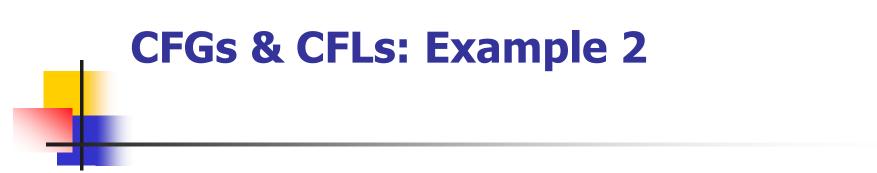
$$L(G) = \{ w : S \Longrightarrow^* w \}$$

Definition. A language L is context-free if there is a context-free grammar $G = (\sum, NT, R, S)$, such that L is generated from G



One of our canonical non-RLs. S $\rightarrow \epsilon \mid \mathbf{a} \ S \mathbf{b}$

Formally: G = ({S}, {**a**,**b**}, {S $\rightarrow \varepsilon$, S \rightarrow **a** S **b**}, S)

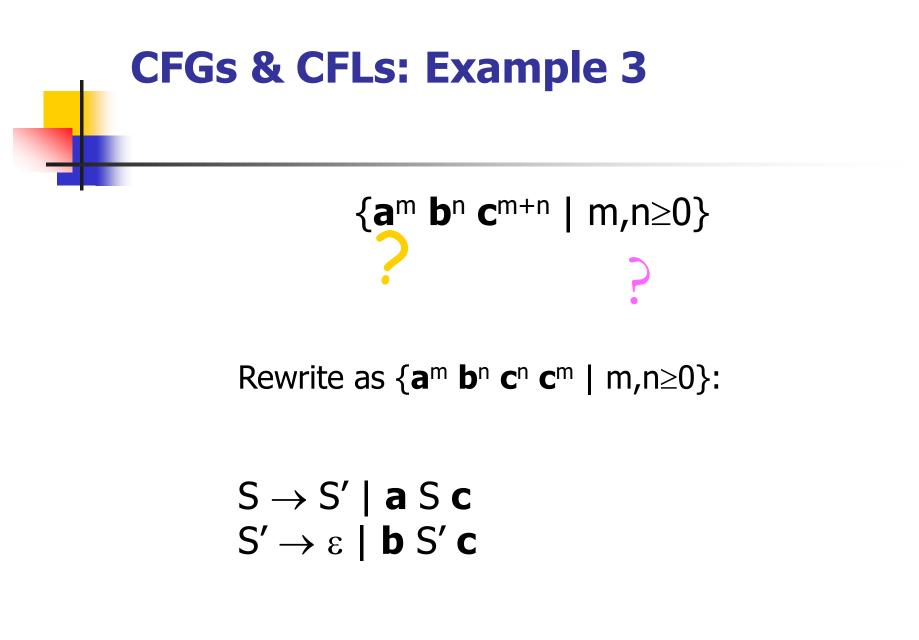


all strings of balanced parentheses

A core idea of most programming languages. Another non-RL. ?

$P \rightarrow \epsilon \mid$ (P) \mid P P

- Both examples used a common CFG technique, "wrapping" around a recursive variable.
 - $S \rightarrow a S b$ $P \rightarrow (P)$



$\{\mathbf{a}^n \ \mathbf{b}^n \ \mathbf{c}^n \ | \ n \ge 0\}$

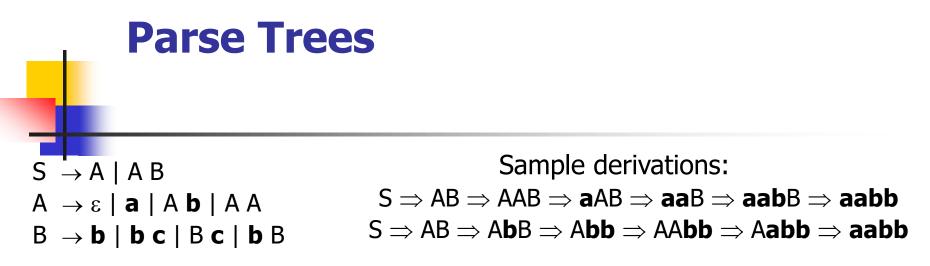
Can't be done; CFL pumping lemma later.

Intuition: Can count to n, then can count down from n, but forgetting n.

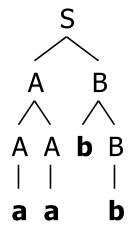
- I.e., a stack as a counter.
- Will see this when using a machine corresponding to CFGs.

A parse tree of a derivation is a tree in which:

- Each internal node is labeled with a nonterminal
- •If a rule $A \rightarrow A_1 A_2 \dots A_n$ occurs in the derivation then A is a parent node of nodes labeled A_1, A_2, \dots, A_n



These two derivations use same productions, but in different orders. This ordering difference is often uninteresting. *Derivation trees* give way to abstract away ordering differences.



Root label = start node.

Each interior label = variable.

Each parent/child relation = derivation step.

Each leaf label = terminal or ε .

All leaf labels together = derived string = *yield*.

Leftmost, Rightmost Derivations

Definition. A **left-most derivation** of a sentential form is one in which rules transforming the left-most nonterminal are always applied

Definition. A **right-most derivation** of a sentential form is one in which rules transforming the right-most nonterminal are always applied

Leftmost & Rightmost Derivations

 $S \rightarrow A \mid A B$ $A \rightarrow \varepsilon \mid \mathbf{a} \mid A \mathbf{b} \mid A A$ $B \rightarrow \mathbf{b} \mid \mathbf{b} \mathbf{c} \mid B \mathbf{c} \mid \mathbf{b} B$

 $\begin{array}{l} \text{Sample derivations:} \\ \text{S} \Rightarrow \text{AB} \Rightarrow \text{AAB} \Rightarrow \textbf{aAB} \Rightarrow \textbf{aaB} \Rightarrow \textbf{aabB} \Rightarrow \textbf{aabb} \\ \text{S} \Rightarrow \text{AB} \Rightarrow \text{AbB} \Rightarrow \text{Abb} \Rightarrow \text{AAbb} \Rightarrow \text{Aabb} \Rightarrow \textbf{aabb} \end{array}$

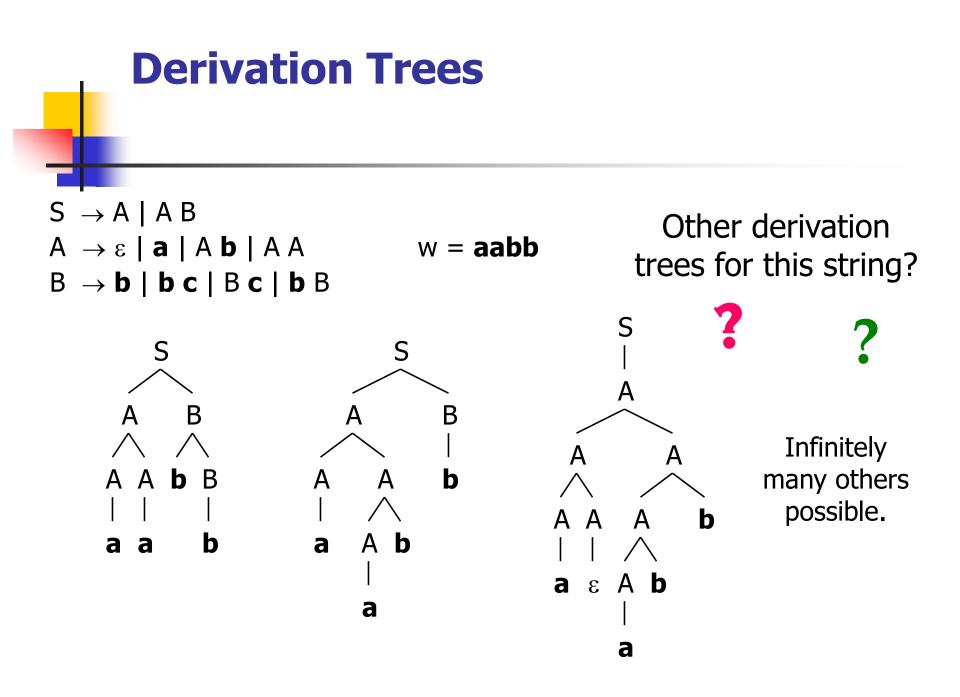


These two derivations are special.

- 1st derivation is *leftmost*. Always picks leftmost variable.
- 2nd derivation is *rightmost*. Always picks rightmost variable.

Left / Rightmost Derivations

- In proofs...
 - Restrict attention to left- or rightmost derivations.
- In parsing algorithms...
 - Restrict attention to left- or rightmost derivations.
 - E.g., recursive descent uses leftmost; yacc uses rightmost.



Ambiguous Grammar

Definition. A grammar G is ambiguous if there is a word $w \in L(G)$ having are least two different parse trees

 $S \rightarrow A$ $S \rightarrow B$ $S \rightarrow AB$ $A \rightarrow aA$ $B \rightarrow bB$ $A \rightarrow e$ $B \rightarrow e$

Notice that a has at least two left-most derivations

CFG *ambiguous* ⇔ any of following equivalent statements:

- ∃ string w with multiple derivation trees.
- \blacksquare \exists string w with multiple leftmost derivations.
- \exists string w with multiple rightmost derivations.

Defining ambiguity of grammar, not language.

Ambiguity & Disambiguation

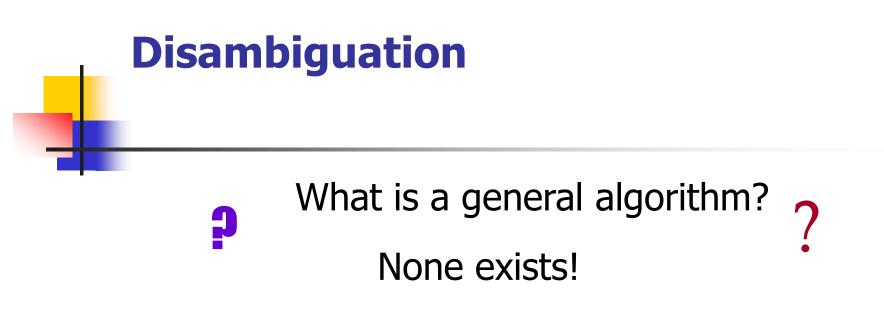
Given an ambiguous grammar, would like an equivalent unambiguous grammar.

- Allows you to know more about structure of a given derivation.
- Simplifies inductive proofs on derivations.
- Can lead to more efficient parsing algorithms.
- In programming languages, want to impose a canonical structure on derivations. E.g., for 1+2×3.

Strategy: Force an ordering on all derivations.

Disambiguation: Example 1

?	$\begin{array}{l} \text{Exp} \rightarrow \mathbf{n} \\ & \text{Exp} + \text{Exp} \\ & \text{Exp} \times \text{Exp} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	What is an equivalent unambiguous grammar?	Uses operator precedence left-associativity



There are CFLs that are *inherently ambiguous* Every CFG for this language is ambiguous.

E.g., $\{\mathbf{a}^{n}\mathbf{b}^{n}\mathbf{c}^{m}\mathbf{d}^{m} \mid n \ge 1, m \ge 1\} \cup \{\mathbf{a}^{n}\mathbf{b}^{m}\mathbf{c}^{m}\mathbf{d}^{n} \mid n \ge 1, m \ge 1\}.$

So, can't necessarily eliminate ambiguity!

CFG Simplification

Can't always eliminate ambiguity.

But, CFG simplification & restriction still useful theoretically & pragmatically.

- Simpler grammars are easier to understand.
- Simpler grammars can lead to faster parsing.
- Restricted forms useful for some parsing algorithms.
- Restricted forms can give you more knowledge about derivations.

CFG Simplification: Example How can the following be simplified? $S' \rightarrow A B$ 1) Delete: B useless because nothing derivable from B. $S \rightarrow A C D$ $A \rightarrow A a$ $A \rightarrow a$ 2) Delete either $A \rightarrow Aa$ or $A \rightarrow aA$. $A \rightarrow a A$ 3) Delete one of the idential productions. $A \rightarrow a$ 4) Delete & also replace $S \rightarrow ACD$ with $S \rightarrow AD$. $C \rightarrow \epsilon$ $D \rightarrow d D$ 5) Replace with $D \rightarrow eAe$. $D \rightarrow E$ 6) Delete: E useless after change #5. 7) Delete: F useless because not derivable from S. $E \rightarrow e A e$ $F \rightarrow f f$

CFG Simplification

Eliminate ambiguity. Eliminate "useless" variables. Eliminate ε -productions: $A \rightarrow \varepsilon$. Eliminate unit productions: $A \rightarrow B$. Eliminate redundant productions. Trade left- & right-recursion.

Trading Left- & Right-Recursion

Left recursion: $A \rightarrow A \alpha$ Right recursion: $A \rightarrow \alpha A$

Most algorithms have trouble with one,

In recursive descent, avoid left recursion.