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Introduction

•Finite Automata accept all regular languages and only regular 

languages 

•Many simple languages are non regular:

and there is no finite automata that accepts them.

- {anbn : n = 0, 1, 2, …}

- {w : w a is palindrome}

• context-free languages are a larger class of languages that 

encompasses all regular languages and  many others, including 

the two above.



Context-Free Grammars

• Languages that are generated by context-free grammars are  

context-free languages

• Context-free grammars are more expressive than finite 

automata: if a language L is accepted by a finite automata 

then L can be generated by a context-free grammar

• Beware: The converse is NOT true



Context-Free Grammar

Definition. A context-free grammar is a 4-tuple (, NT, R, S), 

where:

•  is an alphabet (each character in  is called terminal)

• NT is a set (each element in NT is called nonterminal)

• R, the set of rules, is a subset of NT  (  NT)*

• S, the start symbol, is one of the symbols in NT

If (,)  R, we write production  

 is called a sentential form



CFGs: Alternate Definition

many textbooks use different symbols and terms to describe CFG’s

G = (V, S, P, S)
V = variables a finite set

S = alphabet or terminals a finite set

P = productions a finite set

S = start variable SV

Productions’ form, where AV, (VS)*:

 A  



Derivations

Definition. v is one-step derivable from u, written u  v, if:

• u = xz

• v = xz

•   in R

Definition. v is derivable from u, written u * v, if:

There is a chain of one-derivations of the form:

u  u1  u2  …  v



Context-Free Languages

Definition. Given a context-free grammar 

G = (, NT, R, S), the language generated or 

derived from G is the set:

L(G) =  {w :                }S * w

Definition. A language L is context-free if there is a 

context-free grammar  G = (, NT, R, S), such that L is 

generated from G



CFGs & CFLs: Example 1

{an bn | n0}

One of our canonical non-RLs.

S  e | a S b

Formally:  G = ({S}, {a,b}, 

{S  e, S  a S b}, S)



CFGs & CFLs: Example 2

all strings of balanced parentheses

A core idea of most programming languages.

Another non-RL.

P  e | ( P ) | P P

? ?



CFGs & CFLs: Lessons

 Both examples used a common CFG 
technique, “wrapping” around a recursive 
variable.

S  a S b P  ( P )



CFGs & CFLs: Example 3

{am bn cm+n | m,n0}

? ?

Rewrite as {am bn cn cm | m,n0}:

S  S’ | a S c
S’  e | b S’ c



CFGs & CFLs: Non-Example

{an bn cn | n0}

Can’t be done; CFL pumping lemma later.

Intuition: Can count to n, then can count down 
from n, but forgetting n.
 I.e., a stack as a counter.

 Will see this when using a machine corresponding 
to CFGs.



Parse Tree

A parse tree of a derivation is a tree in which:

• Each internal node is labeled with a nonterminal

•If a rule A A1A2…An occurs in the derivation then A is a 

parent node of nodes labeled A1, A2, …, An
S

a S

a S

S

e

b



Parse Trees

Sample derivations:
S  AB  AAB  aAB  aaB  aabB  aabb

S  AB  AbB  Abb  AAbb  Aabb  aabb

S   A | A B

A   e | a | A b | A A

B   b | b c | B c | b B

These two derivations use same productions, but in different orders.

This ordering difference is often uninteresting.

Derivation trees give way to abstract away ordering differences.

Root label = start node.

Each interior label = variable.

Each parent/child relation = derivation step.

Each leaf label = terminal or e.

All leaf labels together = derived string = yield.

S

A B

AA Bb

a a b



Leftmost, Rightmost Derivations

Definition. A left-most derivation of a sentential form is one 

in which rules transforming the left-most nonterminal are 

always applied

Definition. A right-most derivation of a sentential form is 

one in which rules transforming the right-most nonterminal are 

always applied



Leftmost & Rightmost Derivations

Sample derivations:
S  AB  AAB  aAB  aaB  aabB  aabb

S  AB  AbB  Abb  AAbb  Aabb  aabb

S   A | A B

A   e | a | A b | A A

B   b | b c | B c | b B

S

A B

AA Bb

a a b

These two derivations are special.

1st derivation is leftmost.
Always picks leftmost variable.

2nd derivation is rightmost.
Always picks rightmost variable.



Left / Rightmost Derivations

 In proofs…

 Restrict attention to left- or rightmost derivations.

 In parsing algorithms…

 Restrict attention to left- or rightmost derivations.

 E.g., recursive descent uses leftmost; yacc uses rightmost.



Derivation Trees

Infinitely 
many others 

possible.

S

A B

AA b

a

a

bA

S

A

A A

AA bA

a e

a

bA

S

A B

AA Bb

a a b

S   A | A B

A   e | a | A b | A A

B   b | b c | B c | b B

w = aabb
Other derivation 

trees for this string?

? ?



Ambiguous Grammar

S A

S  B

S AB

A  aA

B  bB

A  e

B  e

Definition. A grammar G is ambiguous if there is a word 

w  L(G) having are least two different parse trees

Notice that a has at least two left-most derivations



Ambiguity

CFG ambiguous  any of following equivalent 
statements:
  string w with multiple derivation trees.

  string w with multiple leftmost derivations.

  string w with multiple rightmost derivations.

Defining ambiguity of grammar, not language.



Ambiguity & Disambiguation

Given an ambiguous grammar, would like an 
equivalent unambiguous grammar.
 Allows you to know more about structure of a 

given derivation.

 Simplifies inductive proofs on derivations.

 Can lead to more efficient parsing algorithms.

 In programming languages, want to impose a 
canonical structure on derivations.  E.g., for 
1+23.

Strategy: Force an ordering on all derivations.



Disambiguation: Example 1

Exp  n

|    Exp + Exp

|    Exp  Exp

What is an equivalent 
unambiguous 

grammar?

Exp  Term

|    Term + Exp

Term  n

|    n  Term

Uses
 operator precedence

 left-associativity

?

?



Disambiguation

What is a general algorithm?

There are CFLs that are inherently ambiguous
Every CFG for this language is ambiguous.

E.g., {anbncmdm | n1, m1}  {anbmcmdn | n1, m1}.

So, can’t necessarily eliminate ambiguity!

None exists!
? ?



CFG Simplification

Can’t always eliminate ambiguity.

But, CFG simplification & restriction still useful 
theoretically & pragmatically.
 Simpler grammars are easier to understand.

 Simpler grammars can lead to faster parsing.

 Restricted forms useful for some parsing 
algorithms.

 Restricted forms can give you more knowledge 
about derivations.



CFG Simplification: Example
How can the following be simplified?

S  A B

S  A C D

A  A a

A  a

A  a A

A  a

C  e

D  d D

D  E

E  e A e

F  f f

1) Delete: B useless because nothing derivable from B.

2) Delete either AAa or AaA.

3) Delete one of the idential productions.

4) Delete & also replace SACD with SAD.

5) Replace with DeAe.

6) Delete: E useless after change #5.

7) Delete: F useless because not derivable from S.

? ?



CFG Simplification

Eliminate ambiguity.  

Eliminate “useless” variables.

Eliminate e-productions: Ae.

Eliminate unit productions: AB.

Eliminate redundant productions.

Trade left- & right-recursion.



Trading Left- & Right-Recursion

Left recursion: A  A 

Right recursion:   A   A

Most  algorithms  have trouble with one,

In recursive descent, avoid left recursion.


