
RESMI P D

BCA

Object-Oriented PHP

2

� Topics:
� OOP concepts – overview, throughout the chapter

� Defining and using objects
� Defining and instantiating classes

� Defining and using variables, constants, and operations

Developing Object-Oriented PHP

� Defining and using variables, constants, and operations

� Getters and setters

� Defining and using inheritance and polymorphism
� Building subclasses and overriding operations

� Using interfaces

� Advanced object-oriented functionality in PHP
� Comparing objects, Printing objects,

� Type hinting, Cloning objects,

� Overloading methods, (some sections WILL NOT BE COVERED!!!)

3

� Object-oriented programming (OOP) refers to the

creation of reusable software object-types / classes that

can be efficiently developed and easily incorporated into

multiple programs.

Object-Oriented Programming

multiple programs.

� In OOP an object represents an entity in the real world (a

student, a desk, a button, a file, a text input area, a loan, a

web page, a shopping cart).

� An OOP program = a collection of objects that interact to

solve a task / problem.

4

� Objects are self-contained, with data and operations that

pertain to them assembled into a single entity.

� In procedural programming data and operations are separate → this

methodology requires sending data to methods!

� Objects have:

Object-Oriented Programming

� Objects have:

� Identity; ex: 2 “OK” buttons, same attributes → separate handle vars

� State → a set of attributes (aka member variables, properties, data

fields) = properties or variables that relate to / describe the object,

with their current values.

� Behavior → a set of operations (aka methods) = actions or

functions that the object can perform to modify itself – its state, or

perform for some external effect / result.
5

� Encapsulation (aka data hiding) central in OOP

� = access to data within an object is available only via the object’s

operations (= known as the interface of the object)

� = internal aspects of objects are hidden, wrapped as a birthday

Object-Oriented Programming

present is wrapped by colorful paper ☺

� Advantages:

� objects can be used as black-boxes, if their interface is known;

� implementation of an interface can be changed without a

cascading effect to other parts of the project → if the interface

doesn’t change

6

� Classes are constructs that define objects of the same type.

A class is a template or blueprint that defines what an

object’s data and methods will be.

Objects of a class have:

Object-Oriented Programming

Objects of a class have:

� Same operations, behaving the same way

� Same attributes representing the same features, but values of

those attributes (= state) can vary from object to object

� An object is an instance of a class.

(terms objects and instances are used interchangeably)

� Any number of instances of a class can be created.
7

� Small Web projects

� Consist of web scripts designed and written using an ad-hoc

approach; a function-oriented, procedural methodology

� Large Web software projects

OOP in Web Programming

� Need a properly thought-out development methodology – OOP →

� OO approach can help manage project complexity, increase code

reusability, reduce costs.

� OO analysis and design process = decide what object types, what

hidden data/operations and wrapper operations for each object type

� UML – as tool in OO design, to allow to describe classes and class

relationships
8

� A minimal class definition:

class classname { // classname is a PHP identifier!

// the class body = data & function member definitions

}

� Attributes

Creating Classes in PHP

� Attributes

� are declared as variables within the class definition using

keywords that match their visibility: public, private, or protected.

(Recall that PHP doesn't otherwise have declarations of variables → data

member declarations against the nature of PHP?)

� Operations

� are created by declaring functions within the class definition.

9

� Constructor = function used to create an object of the class

� Declared as a function with a special name:

function __construct (param_list) { … }

� Usually performs initialization tasks: e.g. sets attributes to

Creating Classes in PHP

� Usually performs initialization tasks: e.g. sets attributes to

appropriate starting values

� Called automatically when an object is created

� A default no-argument constructor is provided by the compiler

only if a constructor function is not explicitly declared in the class

� Cannot be overloaded (= 2+ constructors for a class); if you need

a variable # of parameters, use flexible parameter lists…

10

� Destructor = opposite of constructor

� Declared as a function with a special name, cannot take parameters

function __destruct () { … }

� Allows some functionality that will be automatically executed just

Creating Classes in PHP

� Allows some functionality that will be automatically executed just

before an object is destroyed

� An object is removed when there is no reference variable/handle left to it

� Usually during the "script shutdown phase", which is typically right

before the execution of the PHP script finishes

� A default destructor provided by the compiler only if a destructor

function is not explicitly declared in the class

11

� Create an object of a class = a particular individual that is a

member of the class by using the new keyword:

$newClassVariable = new ClassName(actual_param_list);

� Notes:

Instantiating Classes

� Notes:

� Scope for PHP classes is global (program script level), as it is for

functions

� Class names are case insensitive as are functions

� PHP 5 allows you to define multiple classes in a single program script

� The PHP parser reads classes into memory immediately after functions

⇒ class construction does not fail because a class is not previously

defined in the program scope.

12

� From operations within the class, class’s data / methods can be

accessed / called by using:

� $this = a variable that refers to the current instance of the class, and

can be used only in the definition of the class, including the

constructor & destructor

Using Data/Method Members

constructor & destructor

� The pointer operator -> (similar to Java’s object member access operator “.”)

� class Test {

public $attribute;

function f ($val) {

$this -> attribute = $val; // $this is mandatory!

} // if omitted, $attribute is treated

} // as a local var in the function
13

No $ sign here

� From outside the class, accessible (as determined by access

modifiers) data and methods are accessed through a variable holding

an instance of the class, by using the same pointer operator.

class Test {

Using Data/Method Members

public $attribute;

}

$t = new Test();

$t->attribute = “value”;

echo $t->attribute;

14

� Three access / visibility modifiers introduced in PHP 5, which affect

the scope of access to class variables and functions:

� public : public class variables and functions can be accessed from inside and

outside the class

Defining and Using Variables, Constants
and Functions

outside the class

� protected : hides a variable or function from direct external class access +

protected members are available in subclasses

� private : hides a variable or function from direct external class access +

protected members are hidden (NOT available) from all subclasses

� An access modifier has to be provided for each class instance variable

� Static class variables and functions can be declared without an access

modifier → default is public

15

� Encapsulation : hide attributes from direct access from outside a class

and provide controlled access through accessor and mutator

functions

� You can write custom getVariable() / setVariable($var) functions or

� Overload the functionality with the __get() and __set() functions in PHP

Getters and Setters

� Overload the functionality with the __get() and __set() functions in PHP

� __get() and __set()

� Prototype:

mixed __get($var);

// param represents the name of an attribute, __get returns the value of

that attribute

void __set($var, $value);

// params are the name of an attribute and the value to set it to

16

� __get() and __set()

� Can only be used for non-static attributes!

� You do not directly call these functions;

For an instance $acc of the BankAccount class:

Getters and Setters

For an instance $acc of the BankAccount class:

$acc->Balance = 1000;

implicitly calls the __set() function with the value of $name set to

‘Balance’, and the value of $value set to 1000.

(__get() works in a similar way)

17

� __get() and __set() functions’ value: a single access point to an

attribute ensures complete control over:

� attribute’s values

function __set($name, $value) {

echo "<p>Setter for $name called!</p>";

Getters and Setters

echo "<p>Setter for $name called!</p>";

if (strcasecmp($name, "Balance")==0 && ($value>=0))

$this->$name = $value;

...

}

� underlying implementation: as a variable, retrieved from a db when

needed, a value inferred based on the values of other attributes

→ transparent for clients as long as the accessor / mutator functions’

contract doesn’t change.
18

� Classes in Web development:

� Pages

� User-interface components

� Shopping carts

� Product categories

Designing Classes

� Product categories

� Customers

� TLA Consulting example revisited - a Page class, goals:

� A consistent look and feel across the pages of the website

� Limit the amount of HTML needed to create a new page: easily

generate common parts, describe only uncommon parts

� Easy maintainable when changes in the common parts

� Flexible enough: ex. allow proper navigation elements in each page

19

� Attributes:

� $content → content of the page, a combination of HTML and text

� $title → page’s title, with a default title to avoid blank titles

� $keywords → a list of keywords, to be used by search engines

� $navigation → an associative array with keys the text for the buttons

Class Page

� $navigation → an associative array with keys the text for the buttons

and the value the URL of the target page

� Operations:

� __set()

� Display() → to display a page of HTML, calls other functions to display

parts of the page:

� DisplayTitle(), DisplayKeywords(), DisplayStyles(), DisplayHeader(),

DisplayMenu(), DisplayFooter() → can be overridden in a possible

subclass
20

