PHP Scripting language

Resmi P D
BCA

Introduction to PHP

“PHP is a server-side scripting language designed
specifically for the Web. Within an HTML page,
you can embed PHP code that will be executed
each time the page is visited. Your PHP code is
interpreted at the Web server and generates
HTML or other output that the visitor will see”
(“PHP and MySQL Web Development’, Luke
Welling and Laura Thomson, SAMS)

PHP History

1994: Created by Rasmis Lesdorf, software engineer
(part of Apache Team)

1995: Called Personal Home Page Tool, then released as

version 2 with name PHP/FI (Form Interpreter, to
analyze SQL queries)

Half 1997: used by 50,000 web sites
October 1998: used by 100,000 websites
End 1999: used by 1,000,000 websites

Alternatives to PHP

Practical extraction and Report Language
(Perl)

Active Server Pages (ASP)

Java server pages (JSP)
Ruby

(Good) Topics about PHP

Open-source

Easy to use (C-like and Perl-like syntax)
Stable and fast

Multiplatform

Many databases support

Many common built-in libraries

Pre-installed in Linux distributions

How PHP generates
HTML/JS Web pages

Client
Browser

4 PHP
module

Apache
2

1: Client from browser send HTTP request (with POST/GET

EISEDLIES)
2: Apache recognizes that a PHP script is requested and sends the

request to PHP module
3: PHP interpreter executes PHP script, collects script output and

sends it back
4: Apache replies to client using the PHP script output as HTML

output

Hello World! (web oriented)

<html>
<head>

<title>My personal Hello World! PHP script</title>
</head>
<body>
<?
echo “"Hello Worild!”;
?>
</htmli>

Variables (I)

To use or assign variable $ must be present before the name
of the variable

The assign operator is '='

There is no need to declare the type of the variable

the current stored value produces an implicit type-casting of
the variable.

A variable can be used before to be assigned
$A = 1;
$B = "2";
$C = ($A + $B); // Integer sum
$D = $A . $B; // String concatenation
echo $C; // prints 3
echo $D;// prints 12

Variables (II)

Function isset tests if a variable is assigned or not
$A =1,
if (isset($A))
print “A isset”
if (lisset($B))
print "B is NOT set”;

Using $$
$help = “hiddenVar”;

$$help = “hidden Value”;

echo $$help; // prints hidden Value
$$help = 10;

$help = $$help * $$help;

echo $help; // print 100

Strings (I)

A string is a sequence of chars
$stringTest = “this is a sequence of chars”;
echo $stringTest[0]; output: t

echo $stringTest; output: this is a sequence of chars

A single quoted strings is displayed “as-is”

$age = 37;
$stringTest = 'I am $age years old'; // output: I am $age years old

$stringTest = “I am $age years old”; // output: I am 37 years old
Concatenation

$conc = "is “."a “."composed “."string”;
echo $conc; // output: is a composed string
$newConc = 'Also $conc '.$conc;

echo $newConc; // output: Also $conc is a composed string

Strings (II)

Explode function
$sequence = “A,B,C,D,E,FG";

A\ /4

$elements = explode (%,”,$sequence);

// Now elements is an array with all substrings between “,” char
echo $elemets[0]; // output: A;

echo $elemets[1]; // output:

echo $elemets[2]; // output:

echo $elemets[3]; // output:

echo $elemets[4]; // output:

echo $elemets[5]; // output:

echo $elemets[6]; // output:

Arrays (I)

Groups a set of variables, every element stored into an array as
an associated key (index to retrieve the element)

$books = array(0=>"php manual”,1=>"perl manual”,2=>"C manual”);
$books = array(0=>"php manual”,”perl manual”,”C manual”);
$books = array (“php manual”,”perl manual”,”C manual”);

echo $books[2]; output: C manual

Arrays with PHP are associative

$books = array(“php manual”=>1,"perl manual”’=>1,"C manual”’=>1); // HASH

echo $books[“perl manual”]; output: 1

$books[“lisp manual”] = 1; // Add a new element

Arrays (II)

Working on an arrays
$books = array("php manual”,”perl manual”,”C manual”);
Common loop
for ($i=0; $i < count($books); $i++)
print ($i+1).”-st book of my library: $books[$i]";
each
$books = array(“php manual”=>1,"perl manual”=>2,"C manual”=>3);
while ($item = each($books)) // Retrieve items one by one
print $item[“value”].”-st book of my library: “.$item[“key”];

// each retrieve an array of two elements with key and value of current
element

each and list
while (list($value,$key) = each($books))
print “$value-st book of my library: $key”;

// list collect the two element retrieved by each and store them in two
different // variables

Arrays (III)

Multidimensional arrays

$books = array(array(“title”=>"php manual”,"editor”=>"X","author”=>"A"),

array(“title”"=>"perl manual”,"editor”=>"Y","author”"=>"B"),
array(“title=>"C manual”,"editor”"=>"2",author=>"C"));
Common loop
for ($i=0; $i < count($books); $i++)
print “$i-st book, title: ".$books[$i][title”].” author: “.$books[$i][“author”].
" editor: “.$books[$i][editor”];
// Add ."\n” for text new page or “.
" for HTML new page;
Use list and each
for ($i=0; $i < count($books); $i++)
{
print “$i-st book is: %;
while (list($key,$value) = each($books[$i]))
print “$key: $value “;
print “
"; // or “\n”
b

Case study (small database I)

You need to build one or more web pages to manage your library, but:

“You have no time or no knoledge on how to plan and
design database”

or “"You have no time or knolwdge on how to install a free
database”

And "The database to implement is small” (about few
thousands entries, but depends on server configuration)

Case study (small database II)

#cat /usr/local/myDatabaseDirectory/library.txt
phpmanual X A 330

perimanual Y B 540

o ETLITE]L 2. G g8

(fields separated by tabs: 'php manual<tab>X<tab>A', new line at the end of
each entry)

<? // script to show all book in my library
$books = file(“/usr/local/myDatabaseDirectory/library.txt”); // retrieve library “database”
for ($i=0; $i<count($books), $i++)

$books_array[$i] = explode(“\t”, $books[$i]); // Extract elements from line

for ($i=0; $i<count($books_array), $i++)

print “$i-st book, title: ".$books_array[$i][title”].” author:
“.$books_array[$i]["author”].

“ editor: “.$books_array[$i][“editor”].”"
";

Case study

A way to reuse code (I)

Using functions is possible to write more general code, to allow us to
reuse it to add feature:

For the same project (always try to write reusable code, also you
will work for a short time on a project)

For new projects
<? // config.php, is a good idea to use configuration files
$tableFiles = array (“books”=>"/usr/local/myDatabaseDirectory/books.txt”);
$bookTableFields = array (“title”,”author”,"editor”,"pages”);
// future development of the library project (add new tables)
$tableFiles = array (“users”=>"/usr/local/myDatabaseDirectory/users.txt”);
$userTableFields = array (“code”,“firstName”,"lastName”,"age”,"institute”);

?>

Case study

A way to reuse code (II)

<? // script to show all book in my library
$books = file(“/usr/local/myDatabaseDirectory/library.txt”);
// retrieve library “database”
for ($i=0; $i<count($books), $i++)
$books_array[$i] = explode(“\t”, $books[$i]); // Extract elements from line

for ($i=0; $i<count($books_array), $i++)

print “$i-st book, title: ".$books_array[$i][title”].” author:
“.$books_array[$i][“author”].

“ editor: “.$books_array[$i][“editor”].”"
";

Functions in details (I)

The syntax to implement a user-defined

function is :
function function_name([parameters-list]opt)

parameters-list is a sequence of variables separated by “,”
it's not allowed to overload the name of an existing function;
Function names aren’t case-sensitive;
To each parameter can be assigned a default value;
arguments can be passed by value or by reference
It's possible using a variable number of parameters

Object Oriented PHP

Encapsulation
Polymorphism
Inheritance

Multiple Inheritance: actually unsupported

Encapsulation

<?
class dayOfWeek {
var $day,$month,$year;
function dayOfWeek($day,$month,$year) {
$this->day = $day;
$this->month = $month;
$this->year = $year;
}

function calculate(){
if ($this->month==1){

$monthTmp=13;

$yearTmp = $this->year - 1;
}
if ($this->month == 2){

$monthTmp = 14;

$yearTmp = $this->year - 1;
}

Inheritance

Allow the creation of a hierarchy of classes

Class reuseMe

Class extends reuseMe

Polymorphism

class reuseMe

Class extends reuseMe

Multiple Inheritance not actually supported by
PHP

class extends reuseMel,reuseMe2 {...}

Bibliography

[1] “PHP and MySQL Web Development’, Luke Welling and Laura
Thomson, SA

