
Chapter 4
Syntax Analysis

Sr. Nisha C D
Assistant Professor, Dept. of Computer Science
Little Flower College, Guruvayoor



Outline
 Role of parser
 Context free grammars
 Top down parsing

Bottom up parsing Bottom up parsing
 Parser generators



The role of parser

Lexical 
Analyzer Parser

Source
program

token
Parse tree Rest of 

Front End
Intermediate
representationAnalyzerprogram

getNext
Token

Symbol
table

Front End representation



Uses of grammars
E -> E + T | T
T -> T * F | F
F -> (E) | idF -> (E) | id

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id



Error handling
 Common programming errors

 Lexical errors
 Syntactic errors
 Semantic errors Semantic errors
 Lexical errors

 Error handler goals
 Report the presence of errors clearly and accurately
 Recover from each error quickly enough to detect 

subsequent errors
 Add minimal overhead to the processing of correct 

progrms



Error-recover strategies
 Panic mode recovery

 Discard input symbol one at a time until one of 
designated set of synchronization tokens is found

 Phrase level recovery
 Replacing a prefix of remaining input by some string  Replacing a prefix of remaining input by some string 

that allows the parser to continue
 Error productions

 Augment the grammar with productions that generate 
the erroneous constructs

 Global correction
 Choosing minimal sequence of changes to obtain a 

globally least-cost correction



Context free grammars
 Terminals
 Nonterminals
 Start symbol

productions

expression -> expression + term
expression -> expression – term
expression -> term productions expression -> term
term -> term * factor
term -> term / factor
term -> factor
factor -> (expression)
factor -> id



Derivations
 Productions are treated as rewriting rules to generate a 

string
 Rightmost and leftmost derivations

 E -> E + E | E * E | -E | (E) | id E -> E + E | E * E | -E | (E) | id
 Derivations for –(id+id)

 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id) 



Parse trees
 -(id+id)
 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id) 



Ambiguity
 For some strings there exist more than one parse tree
 Or more than one leftmost derivation
 Or more than one rightmost derivation

Example: id+id*id Example: id+id*id



Elimination of ambiguity



Elimination of ambiguity (cont.)
 Idea:

 A statement appearing between a then and an else
must be matched



Elimination of left recursion
 A grammar is left recursive if it has a non-terminal A

such that there is a derivation A=> Aα
 Top down parsing methods cant handle left-

recursive grammars

+

recursive grammars
 A simple rule for direct left recursion elimination:

 For a rule like:
 A -> A α|β

 We may replace it with
 A -> β A’
 A’ -> α A’ | ɛ



Left recursion elimination (cont.)
 There are cases like following

 S -> Aa | b
 A -> Ac | Sd | ɛ

 Left recursion elimination algorithm:
 Arrange the nonterminals in some order A1,A2,…,An. Arrange the nonterminals in some order A1,A2,…,An.
 For (each i from 1 to n) {

 For (each j from 1 to i-1) {
 Replace each production of the form Ai-> Aj γ by the production 

Ai -> δ1 γ | δ2 γ | … |δk γ where Aj-> δ1 | δ2 | … |δk

are all current Aj productions
 }
 Eliminate left recursion among the Ai-productions

 }



Left factoring
 Left factoring is a grammar transformation that is useful for 

producing a grammar suitable for predictive or top-down 
parsing.

 Consider following grammar:
Stmt -> if expr then stmt else stmt Stmt -> if expr then stmt else stmt

 | if expr then stmt
 On seeing input if it is not clear for the parser which 

production to use
 We can easily perform left factoring:

 If we have A->αβ1 | αβ2   then we replace it with
 A  -> αA’
 A’ ->  β1 | β2



Left factoring (cont.)
 Algorithm

 For each non-terminal A, find the longest prefix α
common to two or more of its alternatives. If α<> ɛ, 
then  replace all of A-productions A->αβ1 |αβ2  | … then  replace all of A-productions A->αβ1 |αβ2  | … 
| αβn | γ by
 A -> αA’ | γ
 A’ -> β1 |β2  | … | βn 

 Example:
 S -> I E t S | i E t S e S | a
 E -> b





Introduction
 A Top-down parser tries to create a parse tree from the 

root towards the leafs scanning input from left to right
 It can be also viewed as finding a leftmost derivation 

for an input stringfor an input string
 Example:   id+id*id

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

E
lm

E

T E’

lm
E

T E’

F T’

lm
E

T E’

F T’

id

lm
E

T E’

F T’

id Ɛ

lm
E

T E’

F T’

id Ɛ

+ T E’



Recursive descent parsing
 Consists of a set of procedures, one for each 

nonterminal
 Execution begins with the procedure for start symbol
 A typical procedure for a non-terminal A typical procedure for a non-terminal

void A() {
choose an A-production, A->X1X2..Xk
for (i=1 to k) {

if (Xi is a nonterminal
call procedure Xi();

else if (Xi equals the current input symbol a)
advance the input to the next symbol;

else /* an error has occurred */
}

}



Recursive descent parsing (cont)
 General recursive descent may require backtracking
 The previous code needs to be modified to allow 

backtracking
 In general form it cant choose an A-production easily. In general form it cant choose an A-production easily.
 So we need to try all alternatives
 If one failed the input pointer needs to be reset and 

another alternative should be tried
 Recursive descent parsers cant be used for left-

recursive grammars



Example
S->cAd
A->ab | a Input: cad

S

c A d

S

c A d

a b

S

c A d

a



First and Follow
 First() is set of terminals that begins strings derived from 
 If α=>ɛ then is also in First(ɛ)
 In predictive parsing when we have A-> α|β, if First(α) 

and First(β) are disjoint sets then we can select 
appropriate A-production by looking at the next input

*

and First( ) are disjoint sets then we can select 
appropriate A-production by looking at the next input

 Follow(A), for any nonterminal A, is set of terminals a that 
can appear immediately after A in some sentential form
 If we have S => αAaβ for some αand βthen a is in 

Follow(A)
 If A can be the rightmost symbol in some sentential form, 

then $ is in Follow(A)

*



Computing First
 To compute First(X) for all grammar symbols X, apply 

following rules until no more terminals or ɛ can be 
added to any First set:
1. If X is a terminal then First(X) = {X}.

*

1. If X is a terminal then First(X) = {X}.
2. If X is a nonterminal and X->Y1Y2…Yk is a production 

for some k>=1, then place a in First(X) if for some i a is 
in First(Yi) and ɛ is in all of First(Y1),…,First(Yi-1) that 
is Y1…Yi-1 => ɛ. if ɛ is in First(Yj) for j=1,…,k then add 
ɛ to First(X).

3. If X-> ɛ is a production then add ɛ to First(X)
 Example!

*



Computing follow
 To compute First(A) for all nonterminals A, apply 

following rules until nothing can be added to any 
follow set:
1. Place $ in Follow(S) where S is the start symbol1. Place $ in Follow(S) where S is the start symbol
2. If there is a production A-> αBβ then everything in 

First(β) except ɛ is in Follow(B).
3. If there is a production A->B or a production               

A->αBβ where First(β) contains ɛ, then everything 
in Follow(A) is in Follow(B)

 Example!



LL(1) Grammars
 Predictive parsers are those recursive descent parsers needing no 

backtracking
 Grammars for which we can create predictive parsers are called 

LL(1)
 The first L means scanning input from left to right The first L means scanning input from left to right
 The second L means leftmost derivation
 And 1 stands for using one input symbol for lookahead

 A grammar G is LL(1) if and only if whenever A-> α|βare two 
distinct productions of G, the following conditions hold:
 For no terminal a do αandβ both derive strings beginning with a
 At most one of α or βcan derive empty string
 If α=> ɛ then βdoes not derive any string beginning with a 

terminal in Follow(A).

*



Construction of predictive 
parsing table
 For each production A->α in grammar do the 

following:
1. For each terminal a in First(α) add A-> in M[A,a]
2. If ɛ is in First(α), then for each terminal b in 2. If ɛ is in First(α), then for each terminal b in 

Follow(A) add A-> ɛ to M[A,b]. If ɛ is in First(α) and 
$ is in Follow(A), add A-> ɛ to M[A,$] as well

 If after performing the above, there is no production 
in M[A,a] then set M[A,a] to error



Example
E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

F
T
E
E’
T’

First Follow

{(,id}
{(,id}
{(,id}
{+,ɛ}

{*,ɛ}

{+, *, ), $}
{+, ), $}

{+, ), $}

{), $}

{), $}

Non -
Input Symbol

id + ( ) $
E

E’

T

T’

F

Non -
terminal id + * ( ) $

E -> TE’ E -> TE’

E’ -> +TE’ E’ -> Ɛ E’ -> Ɛ

T -> FT’ T -> FT’

T’ -> *FT’ T’ -> Ɛ T’ -> Ɛ T’ -> Ɛ

F -> (E) F -> id



Another example
S -> iEtSS’ | a
S’ -> eS | Ɛ
E -> b

Input Symbol

S

S’

E

Non -
terminal

Input Symbol
a b e i t $

S -> a S -> iEtSS’

S’ -> Ɛ
S’ -> eS 

S’ -> Ɛ

E -> b



Non-recursive predicting parsing

a + b $

Predictive
parsing 
program

output

Parsing
Table

M

stack X
Y
Z
$



Predictive parsing algorithm
Set ip point to the first symbol of w;
Set X to the top stack symbol;
While (X<>$) { /* stack is not empty */

if (X is a) pop the stack and advance ip;
else if (X is a terminal) error();else if (X is a terminal) error();
else if (M[X,a] is an error entry) error();
else if (M[X,a] = X->Y1Y2..Yk) {

output the production X->Y1Y2..Yk;
pop the stack;
push Yk,…,Y2,Y1 on to the stack with Y1 on top;

}
set X to the top stack symbol;

}



Example
 id+id*id$

Matched Stack Input Action

E$ id+id*id$E$ id+id*id$



Error recovery in predictive parsing
 Panic mode

 Place all symbols in Follow(A) into synchronization set for 
nonterminal A: skip tokens until an element of Follow(A) is seen 
and pop A from stack.

 Add to the synchronization set of lower level construct the symbols  Add to the synchronization set of lower level construct the symbols 
that begin higher level constructs

 Add symbols in First(A) to the synchronization set of nonterminal 
A

 If a nonterminal can generate the empty string then the production 
deriving can be used as a default

 If a terminal on top of the stack cannot be matched, pop the 
terminal, issue a message saying that the terminal was insterted



Example E

E’

T

T’

F

Non -
terminal

Input Symbol
id + * ( ) $

E -> TE’ E -> TE’

E’ -> +TE’ E’ -> Ɛ E’ -> Ɛ

T -> FT’ T -> FT’

T’ -> *FT’ T’ -> Ɛ T’ -> Ɛ T’ -> Ɛ

F -> (E) F -> id

synch synch

synch synch synch

synch synch synch synch

Stack Input ActionStack Input Action

E$ )id*+id$ Error, Skip )
E$ id*+id$ id is in First(E)

TE’$ id*+id$
FT’E’$ id*+id$

idT’E’$ id*+id$
T’E’$ *+id$

*FT’E’$ *+id$
+id$FT’E’$ Error, M[F,+]=synch
+id$T’E’$ F has been poped





Introduction
 Constructs parse tree for an input string beginning at 

the leaves (the bottom) and working towards the root 
(the top)

 Example: id*id Example: id*id

E -> E + T | T
T -> T * F | F
F -> (E) | id id

F * idid*id T * id

id

F

T * F

id

F id T * F

id

F id

F

T * F

id

F id

F

E



Shift-reduce parser
 The general idea is to shift some symbols of input to 

the stack until a reduction can be applied
 At each reduction step, a specific substring matching 

the body of a production is replaced by the the body of a production is replaced by the 
nonterminal at the head of the production

 The key decisions during bottom-up parsing are about 
when to reduce and about what production to apply

 A reduction is a reverse of a step in a derivation
 The goal of a bottom-up parser is to construct a 

derivation in reverse:
 E=>T=>T*F=>T*id=>F*id=>id*id



Handle pruning
 A Handle is a substring that matches the body of a 

production and whose reduction represents one step 
along the reverse of a rightmost derivation

Right sentential form Handle Reducing production

id*id id F->id
F*id F

id
T->F

T*id F->id

T*F T*F E->T*F



Shift reduce parsing
 A stack is used to hold grammar symbols
 Handle always appear on top of the stack
 Initial configuration:

Stack InputStack Input
$ w$

 Acceptance configuration
Stack Input
$S $



Shift reduce parsing (cont.)
 Basic operations:

 Shift
 Reduce
 Accept

Stack Input Action

$
$id

id*id$ shift
*id$ reduce by F->id Accept

 Error

 Example: id*id

$id *id$ reduce by F->id
$F *id$ reduce by T->F
$T *id$ shift
$T* id$ shift
$T*id $ reduce by F->id
$T*F $ reduce by T->T*F
$T $ reduce by E->T
$E $ accept



Handle will appear on top of 
the stack

S

A
B

S

AB

α β γ y z

Stack Input

$αβγ yz$
$αβB yz$
$αβBy z$

α γ y zx

Stack Input

$αγ xyz$
$αBxy z$



Conflicts during shit reduce 
parsing
 Two kind of conflicts

 Shift/reduce conflict
 Reduce/reduce conflict

 Example: Example:

Stack Input

else …$… if expr then stmt



Reduce/reduce conflict
stmt -> id(parameter_list)
stmt -> expr:=expr
parameter_list->parameter_list, parameter
parameter_list->parameterparameter_list->parameter
parameter->id
expr->id(expr_list)
expr->id
expr_list->expr_list, expr
expr_list->expr Stack Input

,id) …$… id(id



LR Parsing
 The most prevalent type of bottom-up parsers
 LR(k), mostly interested on parsers with k<=1
 Why LR parsers?

 Table driven Table driven
 Can be constructed to recognize all programming language 

constructs
 Most general non-backtracking shift-reduce parsing method
 Can detect a syntactic error as soon as it is possible to do so
 Class of grammars for which we can construct LR parsers are 

superset of those which we can construct LL parsers



States of an LR parser
 States represent set of items
 An LR(0) item of G is a production of G with the dot at 

some position of the body:
 For A->XYZ we have following items For A->XYZ we have following items

 A->.XYZ
 A->X.YZ
 A->XY.Z
 A->XYZ.

 In a state having A->.XYZ we hope to see a string 
derivable from XYZ next on the input.

 What about A->X.YZ?



Constructing canonical LR(0) 
item sets
 Augmented grammar:

 G with addition of a production: S’->S
 Closure of item sets:

 If I is a set of items, closure(I) is a set of items constructed from I by 
the following rules:the following rules:
 Add every item in I to closure(I)
 If A->α.Bβ is in closure(I) and B->γ is a production then add the 

item B->.γ to clsoure(I).
 Example:

E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id



Constructing canonical LR(0) 
item sets (cont.)
 Goto (I,X) where I is an item set and X is a grammar 

symbol is closure of set of all items [A-> αX. β] where 
[A-> α.X β] is in I

 Example I1
E’->E. Example

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E
E’->E.
E->E.+T

I2
E’->T.
T->T.*F

T

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(



Closure algorithm
SetOfItems CLOSURE(I) {

J=I;
repeat

α.Bβ in J)for (each item A-> α.Bβ in J)
for (each prodcution B->γ of G)

if (B->.γ is not in J)
add B->.γ to J;

until no more items are added to J on one round;
return J;



GOTO algorithm
SetOfItems  GOTO(I,X) {

J=empty;

if (A-> α.X β is in I) 
add CLOSURE(A-> αX. β ) to J;

return J;
}



Canonical LR(0) items
Void items(G’) {

C= CLOSURE({[S’->.S]});
repeat

for (each set of items I in C)for (each set of items I in C)
for (each grammar symbol X)

if (GOTO(I,X) is not empty and not in C)
add GOTO(I,X) to C;

until no new set of items are added to C on a round;
}



Example
E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F

E

I1
E’->E.
E->E.+T

I2
E’->T.
T->T.*F

T

I5
id

+

I6
E->E+.T
T->.T*F
T->.F
F->.(E)
F->.id

*
I7

T->T*.F
F->.(E)
F->.id

I9

E->E+T.
T->T.*F

T

I10

T->T*F.

F

id

$
acc

T->.F
F->.(E)
F->.id

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(
I5

F->id.

I3
T>F.

E I8
E->E.+T
F->(E.)

) I11

F->(E).

+



Use of LR(0) automaton
 Example: id*id

Line Stack Symbols Input Action

(1) 0 $ id*id$ Shift to 5

(2) 05 $id *id$ Reduce by F->id(2) 05 $id *id$ Reduce by F->id

(3) 03 $F *id$ Reduce by T->F

(4) 02 $T *id$ Shift to 7

(5) 027 $T* id$ Shift to 5

(6) 0275 $T*id $ Reduce by F->id

(7) 02710 $T*F $ Reduce by T->T*F

(8) 02 $T $ Reduce by E->T

(9) 01 $E $ accept



LR-Parsing model
a1 … ai … an $INPUT

LR Parsing 
ProgramSm

Sm-1

…

$

ACTION GOTO

Output



LR parsing algorithm
let a be the first symbol of w$;
while(1) { /*repeat forever */

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) {

push t onto the stack;push t onto the stack;
let a be the next input symbol;

} else if (ACTION[s,a] = reduce A->β) {
pop |β| symbols of the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A->β;

} else if (ACTION[s,a]=accept) break; /* parsing is done */
else call error-recovery routine;

}



Example (0) E’->E
(1) E -> E + T
(2) E-> T
(3) T -> T * F 
(4) T-> F
(5) F -> (E) 
(6) F->id

STATE ACTON GOTO

id + * ( ) $ E T F

0 S5 S4 1 2 3

1 S6 Acc

2 R2 S7 R2 R2

3 R
4

R7 R4 R4

4 S5 S4 8 2 3

5 R R R6 R6

id*id+id?

Line Stac
k

Symbol
s

Input Action

(1) 0 id*id+id$ Shift to 5

(2) 05 id *id+id$ Reduce by F->id

(3) 03 F *id+id$ Reduce by T->F

(4) 02 T *id+id$ Shift to 75 R
6

R
6

R6 R6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 R1 S7 R1 R1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

(4) 02 T *id+id$ Shift to 7

(5) 027 T* id+id$ Shift to 5

(6) 0275 T*id +id$ Reduce by F->id

(7) 02710 T*F +id$ Reduce by T-
>T*F

(8) 02 T +id$ Reduce by E->T

(9) 01 E +id$ Shift

(10) 016 E+ id$ Shift

(11) 0165 E+id $ Reduce by F->id

(12) 0163 E+F $ Reduce by T->F

(13) 0169 E+T` $ Reduce by E-
>E+T

(14) 01 E $ accept



Constructing SLR parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(0) items for G’
 State i is constructed from state Ii:

 If [A->α.aβ] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to “shift j”
 If [A->α.] is in Ii, then set ACTION[i,a] to “reduce A->α” for all a in  If [A->α.] is in Ii, then set ACTION[i,a] to “reduce A->α” for all a in 

follow(A)
 If {S’->.S] is in Ii, then set ACTION[I,$] to “Accept”

 If any conflicts appears then we say that the grammar is not 
SLR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the 

set of items containing [S’->.S]



Example grammar which is not 
SLR(1) S -> L=R | R

L -> *R | id
R -> L

I0
S’->.S
S -> .L=R 

I1
S’->S.

I3
S ->R.

I5
L -> id.

I7
L -> *R.

S -> .L=R 
S->.R
L -> .*R | 
L->.id
R ->. L

I2
S ->L.=R 
R ->L.

I4
L->*.R
R->.L
L->.*R
L->.id

I6
S->L=.R
R->.L
L->.*R
L->.id

I8
R -> L.

I9
S -> L=R.

Action
=

2
Shift 6
Reduce R->L



More powerful LR parsers
 Canonical-LR or just LR method

 Use lookahead symbols for items: LR(1) items
 Results in a large collection of items

 LALR: lookaheads are introduced in LR(0) items LALR: lookaheads are introduced in LR(0) items



Canonical LR(1) items
 In LR(1) items each item is in the form: [A->α.β,a]
 An LR(1) item [A->α.β,a] is valid for a viable prefix γ if 

there is a derivation S=>δAw=>δαβw, where
 Γ= δα

*
rm

 Γ= δα
 Either a is the first symbol of w, or w is ε and a is $

 Example:
 S->BB
 B->aB|b

S=>aaBab=>aaaBab*
rm

Item [B->a.B,a] is valid for γ=aaa
and w=ab 



Constructing LR(1) sets of items
SetOfItems Closure(I) {

repeat
for (each item [A->α.Bβ,a] in I)

for (each production B->γ in G’)
for (each terminal b in First(βa))

add [B->.γ, b] to set I;
until no more items are added to I;
return I;

}

SetOfItems Goto(I,X) {SetOfItems Goto(I,X) {
initialize J to be the empty set;
for (each item [A->α.Xβ,a] in I)

add item [A->αX.β,a] to set J;
return closure(J);

}

void items(G’){
initialize C to Closure({[S’->.S,$]});
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (Goto(I,X) is not empty and not in C)
add Goto(I,X) to C;

until no new sets of items are added to C;
}



Example
S’->S
S->CC
C->cC
C->dC->d



Canonical LR(1) parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(1) items for G’
 State i is constructed from state Ii:

 If [A->α.aβ, b] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to 
“shift j”“shift j”

 If [A->α., a] is in Ii, then set ACTION[i,a] to “reduce A->α”
 If {S’->.S,$] is in Ii, then set ACTION[I,$] to “Accept”

 If any conflicts appears then we say that the grammar is not 
LR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the 

set of items containing [S’->.S,$]



Example
S’->S
S->CC
C->cC
C->dC->d



LALR Parsing Table
 For the previous example we had:

I4
C->d. ,   c/d I47C->d. ,   c/d

I7
C->d. ,   $

I47
C->d. ,   c/d/$

 State merges cant produce Shift-Reduce conflicts. 
Why?

 But it may produce reduce-reduce conflict



Example of RR conflict in state 
merging
S’->S
S -> aAd | bBd | aBe | bAe
A -> c
B -> cB -> c



An easy but space-consuming 
LALR table construction
 Method:

1. Construct C={I0,I1,…,In} the collection of LR(1) items.
2. For each core among the set of LR(1) items, find all sets 

having that core, and replace these sets by their union.
3. Let C’={J0,J1,…,Jm} be the resulting sets. The parsing actions 3. Let C’={J0,J1,…,Jm} be the resulting sets. The parsing actions 

for state i, is constructed from Ji as before. If there is a 
conflict grammar is not LALR(1).

4. If J is the union of one or more sets of LR(1) items, that is J = 
I1 UI2…IIk then the cores of Goto(I1,X), …, Goto(Ik,X) are 
the same and is a state like K, then we set Goto(J,X) =k.

 This method is not efficient, a more efficient one is 
discussed in the book



Compaction of LR parsing table
 Many rows of action tables are identical

 Store those rows separately and have pointers to them 
from different states

 Make lists of (terminal-symbol, action) for each state Make lists of (terminal-symbol, action) for each state
 Implement Goto table by having a link list for each 

nonterinal in the form (current state, next state)



Using ambiguous grammars
E->E+E
E->E*E
E->(E)
E->id

STATE ACTON GO
TO

id + * ( ) $ E

0 S3 S2 1

1 S4 S5 Acc

2 S3 S2 6

3 R4 R4 R4 R4

4 S3 S2 7

I0: E’->.E
E->.E+E
E->.E*E
E->.(E)
E->.id

I1: E’->E.
E->E.+E
E->E.*E

I2: E->(.E)
E->.E+E
E->.E*E
E->.(E)
E->.id

I3: E->.id
I4: E->E+.E
E->.E+E
E->.E*E
E->.(E)
E->.id

I5:  E->E*.E
E->(.E)
E->.E+E
E->.E*E
E->.(E)
E->.id

I6: E->(E.)
E->E.+E
E->E.*E

I7: E->E+E.
E->E.+E
E->E.*E

I8: E->E*E.
E->E.+E
E->E.*E

I9: E->(E).

5 S3 S2 8

6 S4 S5

7 R1 S5 R1 R1

8 R2 R2 R2 R2

9 R3 R3 R3 R3



Readings
 Chapter 4 of the book


