
Subject: Data structures using C
Topic : Linked list
Name of the teacher: Lisna Thomas
Academic year:2020-2021



What are Linked Lists

 A linked list is a lineardata  
structure.

 Nodes make up linkedlists.

 Nodes are structures made up  
of data and a pointer to another  
node.

 Usually the pointer iscalled  
next.



Arrays Vs Linked Lists

Arrays Linked list

Fixed size: Resizing is expensive Dynamic size

Insertions and Deletions are inefficient:

Elements are usually shifted

Insertions and Deletions are efficient: No

shifting

Random access i.e., efficient indexing No random access

 Not suitable for operations requiring  

accessing elements by index such as sorting

No memory waste if the array is full or almost  

full; otherwise may result in much memory  

waste.

Since memory is allocated dynamically(acc. to  

our need) there is no waste of memory.

Sequential access is faster [Reason: Elements in  

contiguous memory locations]

Sequential access is slow [Reason: Elements not  

in contiguous memory locations]



Types of lists

 There are two basic typesof linked list

Singly Linked list

Doubly linked list



Singly Linked List

 Each node has only one link part

 Each link part contains the address of the next node in  
the list

 Link part of the last node contains NULL value which  
signifies the end of thenode



Schematic representation

a b c d

 Here is a singly-linked list(SLL):

myList

•Each node contains a value(data) and a pointer  
to the next node in thelist

• myList is the header pointer which points at
the first node in thelist



Basic Operations on a list

• Creating a List

• Inserting an element in alist

• Deleting anelement from a list

• Searching a list

• Reversing a list



Creating a node

// A simple node of a linked list

struct node{
int data;  

node*next;

}*start;

start=NULL ;

//start points at the firstnode

initialised to NULL atbeginning



node* create( int num) //say num=1 is passed frommain
{

node*ptr;
ptr= new node; //memory allocateddynamically  

if(ptr==NULL)
‘OVERFLOW’ // no memoryavailable
exit(1);  

else
{

ptr->data=num;  
ptr->next=NULL;  
return ptr;

}
}



To be called from main() as:-

void main()

{

node* ptr;  

int data;  

cin>>data;

ptr=create(data);

}



Inserting the node in a SLL

There are 3 cases here:-

Insertion at thebeginning

Insertion at theend

Insertion aftera particular node



Insertion at the beginning

There are two steps to be followed:-

a) Make the next pointerof the node point towards the  
first node of the list

b) Make the start pointer point towards this new node

 If the list is empty simply make the start pointer  
point towards the newnode;





//if the list isempty

void insert_beg(node* p)
{
node* temp;

if(start==NULL)
{

start=p;
cout<<”\nNode inserted successfully atthe  

beginning”;
}

else {

}

temp=start;  
start=p;
p->next=temp; //making new node point at

the first node of thelist
}



Inserting at the end

Here we simply need to make the next pointer  

of the last node point to the new node



void insert_end(node* p)

{

node *q=start;

if(start==NULL)

{

start=p;

cout<<”\nNode inserted successfully at theend…!!!\n”;

}

else{

while(q->link!=NULL)  

q=q->link;

q->next=p;

}

}



Inserting after an element

Here we again need to do 2 steps :-

 Make the next pointer of the node to be inserted  
point to the next node of the node afterwhich you  
want to insert thenode

 Make the next pointerof the node afterwhich the  
node is to be inserted, point to the node to be  
inserted





void insert_after(int c,node* p)
{
node* q;  
q=start;

for(int i=1;i<c;i++)
{

q=q->link;
if(q==NULL)

cout<<”Less than “<<c<<” nodes in thelist…!!!”;
}

p->link=q->link;  
q->link=p;
cout<<”\nNode inserted successfully”;
}



Deleting a node in SLL

Here also we have threecases:-

 Deleting the first node

Deleting the last node

Deleting the intermediate node



Deleting the first node

threetwoone

Here we apply 2steps:-

 Making the start pointer point towards the 2nd 

node

 Deleting the first node using deletekeyword

start



void del_first()
{

if(start==NULL)  
cout<<”\nError……List is empty\n”;  
else
{
node* temp=start;
start=temp->link;
delete temp;

cout<<”\nFirst node deleted successfully….!!!”;
}

}



Deleting the last node

node3node2node1

Here we apply 2steps:-

 Making the second last node’s next pointerpoint  
to NULL

 Deleting the last node viadelete keyword

start



void del_last()

{

if(start==NULL)  

cout<<”\nError….List isempty”;  

else

{

node* q=start;

while(q->link->link!=NULL)  

q=q->link;

node* temp=q->link;  

q->link=NULL;  

delete temp;

cout<<”\nDeleted successfully…”;

}

}

}



Deleting a particular node

Here we make the next pointer of the node previous to  
the node being deleted ,point to the successor node of  
the node to be deleted and then delete the node using  
delete keyword

node1 node2 node3

To be deleted



void del(intc)
{
node* q=start;

for(int i=2;i<c;i++)
{
q=q->link;

if(q==NULL)
cout<<”\nNode not found\n”;

}
if(i==c)
{

//node to bedeleted
//disconnecting the nodep

node* p=q->link;  
q->link=p->link;  
delete p;
cout<<“Deleted Successfully”;
}

}



Searching a SLL
 Searching involves finding the required element inthe  

list

 Wecan use various techniques of searching like linear  
search or binary search where binary search is more  
efficient in case of Arrays

 But in case of linked list since random access is not  
available it would become complex to do binary search  
in it

 Wecan perform simple linear search traversal



In linear search each node is traversed till the data in

the node matches with the required value

void search(intx)

{

node*temp=start;  

while(temp!=NULL)

{

if(temp->data==x)

{

cout<<“FOUND ”<<temp->data;  

break;

}

temp=temp->next;

}

}



Reversing a linked list

• Wecan reverse a linked list by reversing the  
direction of the links between 2 nodes



 We make use of 3 structure pointers say p,q,r

 At any instantq will point to the node next to p and r  
will point to the node next to q

NULLHead P

NULL

• For next iteration p=q andq=r

• At the end we will change head to the last node

qp rq



Code
void reverse()
{
node*p,*q,*r;  

if(start==NULL)
{
cout<<"\nList is empty\n";
return;
}

p=start;  
q=p->link;
p->link=NULL;

while(q!=NULL)
{
r=q->link;
q->link=p;
p=q;
q=r;
}
start=p;
cout<<"\nReversed successfully";

}



Operation ID-Array Complexity Singly-linked list Complexity

Insert at beginning O(n) O(1)

Insert at end O(1) O(1) if the list has tail reference

O(n) if the list has no tail reference

Insert at middle O(n) O(n)

Delete at beginning O(n) O(1)

Delete at end O(1) O(n)

Delete at middle O(n):

O(1) access followed by O(n)  

shift

O(n):

O(n) search, followed by O(1) delete

Search O(n) linear search

O(log n) Binary search

O(n)

Indexing: What is  

the element at a  

given position k?

O(1) O(n)

COMPLEXITY OF VARIOUS OPERATIONS  
IN ARRAYS AND SLL



Doubly Linked List

1. Doubly linked list is a linked data structure that consists of a set of  
sequentially linked records called nodes.

2 . Each node contains three fields::

-: one is data part which contain data only.

-:two other field is links part that are point

or references to the previous or to the next

node in the sequence of nodes.

3. The beginning and ending nodes' previous and next  

links, respectively, point to some kind of terminator,  

typically a sentinel node or null to facilitate traversal  

of the list.



NODE

A B C

A doubly linked list contain three fields: an integer value, the  
link to the next node, and the link to the previous node.

previous data next

NULL 11 786

786200 400

200 656 400 786 777 NULL



DLL’s compared to SLL’s

 Advantages:

 Can be traversed in either  
direction (may be  
essential for some  
programs)

 Some operations, suchas  
deletion and inserting  
before a node, become  
easier

 Disadvantages:

 Requires morespace

 List manipulations are  
slower (because more  
links must bechanged)

 Greater chance of having
bugs (because more links
must be manipulated)



Structure of DLL

//holds the address of previousnode

struct node

{

int data;  

node*next;  

node*previous;

};

.Data .nextprevious.
inf



Inserting at beginning



void insert_beg(node *p)
{

if(start==NULL)
{
start=p;
cout<<"\nNode inserted successfully at thebeginning\m";

}
else
{
node* temp=start;
start=p;

//making 1st node’s previous point to the

//making nextof the new node point to the

temp->previous=p;  
new node
p->next=temp;
1st node

cout<<"\nNode inserted successfully at thebeginning\n";
}



Inserting at the end



void insert_end(node* p)
{

if(start==NULL)
{
start=p;
cout<<"\nNode inserted successfully at the end";
}
else
{
node* temp=start;  
while(temp->next!=NULL)
{
temp=temp->next;
}

temp->next=p;
p->previous=temp;
cout<<"\nNode inserted successfullyat the end\n";
}

}



Making next and previous pointerof the node to be  
inserted pointaccordingly

Adjusting the next and previous pointers of the nodes b/w which  
the new nodeaccordingly

Inserting after a node



void insert_after(int c,node*p)
{

temp=start;
for(int i=1;i<c-1;i++)
{
temp=temp->next;
}
p->next=temp->next;  
temp->next->previous=p;  
temp->next=p;
p->previous=temp;  
cout<<"\nInserted successfully";

}



Deleting a node

• Node deletion from a DLL involves changing two links

• In this example,wewill delete node b

myDLL

a b c

• Wedon’t have to do anything about the links in node b

• Garbage collection will take care of deletednodes

• Deletion of the first node or the last node is a special  
case



void del_at(intc)
{

node*s=start;
{

for(int i=1;i<c-1;i++)
{
s=s->next;
}
node* p=s->next;  
s->next=p->next;
p->next->previous=s;  
delete p;
cout<<"\nNode number "<<c<<" deleted successfully";
}

}
}



APPLICATIONS OF LINKED LIST

1.Applications that have an MRU list (a linked list of file  
names)

2.The cache in your browser that allows you to hit the BACK  
button (a linked list of URLs)

3.Undo functionality in Photoshop or Word (a linked list of  
state)

4.A stack, hash table, and binary tree can be implemented  
using a doubly linkedlist.



• Polynomials

6 2 3 8

0 2

Index  
represents  
exponents

-3 18 0 0 23

0 42

•Array Implementation:
• p1(x) = 8x3 + 3x2 + 2x + 6
• p2(x) = 23x4 + 18x - 3

p1(x) p2(x)



•This is why arrays aren’t good to represent  
polynomials:

• p3(x) = 16x21 - 3x5 + 2x +6

6 2 0 0 -3 0 ………… 0 16

WASTE OF SPACE!



• Advantages of using an Array:

• only good for non-sparsepolynomials.
• ease of storage and retrieval.

• Disadvantages of using anArray:

• have to allocate array size ahead of time.
•huge array size required for sparse  
polynomials. Waste of space andruntime.



• Polynomial Representation

• Linked list Implementation:

• p1(x) = 23x9 + 18x7 + 41x6 + 163x4 + 3
• p2(x) = 4x6 + 10x4 + 12x + 8

23 9 18 7 41 6 18 7 3 0

4 6 10 4 12 1 8 0

P1

P2

NODE (contains coefficient & exponent)

TAIL (containspointer)



• Advantages of using a Linked list:

•save space (don’t have to worry about sparse  
polynomials) and easy tomaintain
•don’t need to allocate list size and can  
declare nodes (terms) only asneeded

• Disadvantages of using a Linked list :
• can’t go backwards through thelist

•can’t jump to the beginning of the listfrom  
the end.



Polynomials
A(x )

em 1

am 1x am

em 2 e0

2 x ... a0 x

Representation

struct polynode {
int coef;
int exp;
struct polynode * next;

};

typedef struct polynode *polyptr;

coef exp next



•Adding polynomials using a Linked list  
representation: (storing the result inp3)

Todo this, we have to break the process down to  
cases:
• Case 1: exponent of p1 > exponent ofp2
• Copy node of p1 to end ofp3. 
[go to next node]
• Case 2: exponent of p1 < exponent ofp2
• Copy node of p2 to end ofp3. 
[go to next node]



• Case 3: exponent of p1 = exponent ofp2
•Create a new node in p3 with the same  
exponent and with the sum of the  
coefficients of p1 and p2.



Example

3 14 2 8
a

8 14 -3 10

b

b

1 0 null

10 6 null

8 x 14 3x 10 10 x 6

a 3x14 2x 8 1



Adding Polynomials
3 14

a

8 14

2 8

-3 10

1 0

10 6

b
11 14

d

a->expon == b->expon

3 14 1 0

a

2 8

-3 10 10 6

b

8 14

11 14 -3 10 a->expon < b->expon



3 14 2 8 1 0

a

8 14 -3 10 10 6

b
11 14 -3 10

d
a->expon > b->expon

2 8



THANK YOU


