B.Sc. Chemistry SEM III CHE3B03-PHYSICAL CHEMISTRY

MODULE II
CHEMICAL THERMODYNAMICS-I
Part 1

Lovely Jacob A
Dep.of Chemistry

Little Flower College,Guruvayoor

The First Law of Thermodynamics

- The First Law of Thermodynamics states that energy cannot be created nor be destroyed. It can only change from or be transferred from one object to another.
- It deals with the total amount of energy in the universe, and in particular, it states that this total amount does not change.

Examples

- Light bulbs transform electrical energy into light energy (radiant energy).
- One pool ball hits another, transferring kinetic energy and making the second ball move.
- Plants convert the energy of sunlight (radiant energy) into chemical energy stored in organic molecules.

It says that the change in the internal energy of a system is equal to the sum of the heat gained or lost by the system and the work done by or on the system.

- $\Delta E_{\text {univ }}=\Delta E_{\text {sys }}+\Delta E_{\text {surr }}=0$

$$
\Delta U=q+w
$$

- Energy

The capacity to do work or to transfer heat
Modes of transfer of energy,
1.Work- Energy transfer at the molecular level between system and surroundings making use of organized motion of atoms or molecules.
2. Heat - Energy transfer at the molecular level between system and surroundings making use of disorderly molecular motion (Thermal motion)
Both are Path functions
Both are Qualitatively equivalent

- Work

Work is one means of transferring energy from our system to the surroundings or vice versa. Work is given the symbol w in equations.
By the latest SI conventions,
Work done on the system,+ve (Increases its energy)
Work done by the system,-ve (decreases its energy)

- Heat

Heat is the Energy transfered between the system and the surroundings as a result of a temperature differential. This is the only kind of energy transfer that does not involve doing work. Heat is given the symbol q in equations.
For endothermic process, q is +ve
For exothermic process, q is weweab A,Asst.Prof.in Chemistry, Little
Flower College, Guruvayoor

work

- One of the most common definitions for work is, when a force f displaces an object by a distance Δx does work $w=f \times \Delta x$. (also known as $w=f \times d$). This is a mechanical work and serves as the basis for our definition of $P V$ work.
- Work can also be done by pushing back the atmosphere (piston in a cylinder). In this case, one pushes back against the atmospheric pressure $P_{\text {atm }}$ and moves the piston a distance Δx.
- The force needed to push back the atmosphere is actually $P_{\mathrm{atm}} \times A$. where, A is the area of the piston. Hence, we can calculate the magnitude of the work done as

$$
|w|=P_{\mathrm{atm}} \times A \times \Delta x=P_{\mathrm{atm}} \times \Delta V .
$$

- Since the system increased in volume and hence, did the work of pushing back the atmosphere (positive value for ΔV), it has used up energy
so we can now write down
a more complete definition for PV work as:

$$
W=-\underset{\text { Lovely Jacob A,Asst.Prof.in Chemistry, Little }}{\quad \times \Delta V} \quad \begin{aligned}
& \text { Flower College, Guruvayoor }
\end{aligned}
$$

UNITS

- SI units of energy (work or heat):

Let's start with work: w has dimension of force times distance.
The SI units are $\mathrm{Nm}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}=$ Joules (J). These are the same units used for heat transfer.

- In CGS system,

$$
1 \mathrm{~J}=10^{7} \mathrm{ergs}
$$

$1 \mathrm{cal}=4.184 \mathrm{~J}$

Energy and Work are Equivalent

Total Work done under different conditions

$$
w=-P_{\mathrm{atm}} \times \Delta V
$$

Or
$W=-P_{\text {ext }} \cdot \Delta V$
1.At Costant pressure, $\mathrm{W}=-\mathrm{P}_{\mathrm{ext}} \cdot \Delta V$
2.At Free Expansion, W=0
3.At Reversible Expansion $\left(P_{\text {ext }}=P_{\text {gas }}\right), W=-P_{\text {gas }} . \Delta V$

The work done by a system during a reversible process is the maximum work we can get.
The work done on a system in a reversible process is the minimum work we need to do to achieve that state change.

- $\mathbf{W}_{\text {rev }}=\mathbf{W}_{\text {max }}$

Reversible \& Irreversible

Reversible process	Irreversible process
It is a slow process going through a series of smaller stages with each stage maintaining equilibrium this process the system attains between the system and surroundings.	In thal state from the initial state with a fina measurable speed. During the transformation, there is no equilibrium maintained between the system and surroundings.
A reversible process can be made to proceed in forward or backward direction.	Irreversible process can take place in one direction only.

The driving force for the reversible process is small since the process proceeds in smaller steps.	There is a definite driving force required for the progress of the irreversible process.
Work done in a reversible process is greater than the corresponding work done in irreversible process.	Work done in a irreversible process is always lower than the same kind of work done in a reversible process.
A reversible process can be brought back to the initial state without making an change in the adjacent surroundings.	An irreversible process cannot be brought back to its initial state without making a change in the surroundings.

Reversible - Idealized concept,Nonspontaneous
Irreversible - Real ConceptsSpontaneous, Natural Process

Internal energy

- $\mathrm{E}_{\text {total }}=\mathrm{V}+\mathrm{K}+\mathrm{U}$
- $V=P . E$ of the system
- K = K.E. of the system
- $\mathbf{U}=$ Sum total of the kinetic energies associated with the translational,rotational,vibrational ,electronic and nuclear motions at the molecular level, the relativistic rest mass energy of the electrons and nuclei, and the potential energy of interaction between the constituent particles of the molecules.
In short,
- U=kinetic and potential energies of the molecules.
- $\Delta U=U_{2}-U_{1}$
- U ----- State function
- U -- Total energy of system excluding the macroscopic K.E and P.E
- U--- Extensive Property
- In Thermodynamics,

We consider the Total energy as the Internal Energy,U.
ie, in eqn
$\mathbf{E}_{\text {total }}=\mathbf{V}+\mathbf{K}+\mathbf{U}$
V,K are Zero
Therefore, the Mathematical expression for $1^{\text {st }}$ Law of Thermodynamics is,
$\Delta \mathbf{U}=\mathbf{q}+\mathbf{w}$
Two conditions

- For a Pressure-Volume work, $\Delta \mathrm{U}=\mathrm{q}$ - P. ΔV
- At costant $V, \Delta U=q$

Consequences of the $1^{\text {st }}$ law

- Path independence of Internal Energy Change-Exact differentials
U is a state function (it does not depend on how the system got from the initial to the final state)
$\Delta U=U_{A}-U_{B}$
$\Delta \mathrm{U}=\int_{A}^{B} d U$

- Path dependence of Work and Heat- Inexact $\overrightarrow{\text { vitterentials }}$

Path dependence implies that the amount of work or heat needed to make the change depends on how the process was performed, not just what state the material started in and ended in.

Hz $=\int_{\text {Apath }}^{B} d w$
$\underline{C I}=\int_{A, p a t h}^{B} d q$

- Cannot write, $\mathrm{w}_{\mathrm{B}}-\mathrm{w}_{\mathrm{A}}$

ENTHALPY

- Enthalpy, the sum of the internal energy and the product of the pressure and volume of a thermodynamic system.
- $H=U+P V$
- Enthalpy is an energy-like property
- It has the dimensions of energy. (measured in units of joules or ergs)
- State function $\boldsymbol{\Delta H}=\mathbf{H}_{\mathbf{2}}-\mathrm{H}_{\mathbf{1}}$
- For Exothermic process, $\Delta \mathrm{H}$ is $+\mathbf{v e}$
- For endothermic process, $\mathbf{\Delta H}$ is -ve

Relationship between ΔH \& $\Delta \mathrm{U}$

- $\Delta H=\Delta U+P \Delta V$ (at Constant P)
- $\Delta \mathbf{U}=\mathbf{q}+\mathbf{w}$
$q=\Delta U-w$
- We considering P-V work,

Then,

$$
\mathbf{w}=-\mathrm{P} \Delta V
$$

Therefore,

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{p}}=\Delta U+P \Delta V \\
& \Delta \mathbf{H}=\mathbf{q}_{\mathbf{p}}
\end{aligned}
$$

ie, For a process involving other than expansion work, the enthalpy change is equal to the heat added to the system

If $\Delta U=q_{v}$

$$
q_{p}=q_{v}+P \Delta V
$$

Enthalpy of Reaction $\quad \Delta H=\sum_{p} H_{p}-\sum_{r} H_{r}$

- Reaction Type
- Exothermic
- Endothermic

(a) Exothermic reaction

<0
>0
$\Delta H_{r x n}$
< 0 (heat flows from a system to its surroundings)
>0 (heat flows from the surroundings to a system)

(b) Endothermic reaction

Energy changes in chemical reactions are usually measured as changes in enthalpy. (a) If heat flows from a system to its surroundings, the enthalpy of the system decreases, ΔH_{rxn} is negative, and the reaction is exothermic; it is energetically downhill. (b) Conversely, if heat flows from the surroundings to a system, the enthalpy of the system increases, $\Delta H_{r x n}$ is positive, and the reaction is endothermic; it is energetically youphill Profin chemistry, ititle

Enthalpy Change in a reaction

$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \\ & 6 \mathrm{~mol} \text { gas } \longrightarrow \\ & \end{aligned} \quad 7 \mathrm{~mol}$ gas (increase in volume at const. P)

- $w=-P_{\text {surr }} \Delta V$ (gas expanding against an external pressure $P_{\text {surr }}$)
- $\Delta U=q+w=q-P_{\text {surr }} \Delta V$

Or, $q_{p}=\Delta U+P_{\text {surr }} \Delta V$

- in this case, we can use the ideal gas law to get a more useful equation as long as the gas molecules all behave ideally.
- $q_{p}=\Delta U+\Delta n_{g} R T$. which is also written as $\Delta H=\Delta U+\Delta n_{g} R T$.
- In a closed container (no volume change) there would be no work.

So, $\Delta V=0$
So,

$$
\Delta U=q_{v} .
$$

Heat Capacity

- Heat Capacity
- Amount of heat to raise an object or a given amount of substance by $1^{\circ} \mathrm{C}(1 \mathrm{~K})$.
- Molar Heat Capacity
- Amount of heat to raise one mole of a substance by $1^{\circ} \mathrm{C}$ (1K). (units J $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$). (water has molar heat capacity of $75.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
- Specific Heat
- Amount of heat required to raise one gram by $1^{\circ} \mathrm{C}(1 \mathrm{~K})$. (units J $\mathrm{K}^{-1} \mathrm{~g}^{-1}$) (water has specific heat of $1 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~g}^{-1}$ or $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$
- Calorimeter
- Device used in Calorimetry to measure heat processes (normally thermally insulated from the surroundings)

$$
\underset{\substack{\text { Lovely Jacob } \\ \text { Flower College, Guruvayoor }}}{\underline{G}}
$$

$$
C=\frac{q}{\Delta T}
$$

It is not completely correct to talk of heat capacity in terms of q since q is not a state function. We are better off using the state functions ΔH rather than q.
We assume that no electrical or mechanical work w^{\prime} is being done.
At constant pressure, we measure heat as $\Delta H=q_{p}$, and hence the heat capacity we need to use is C_{p}, where we define

$$
C_{F}=\frac{\Delta H}{\Delta T}
$$

Thus, we can write (at constant P)
$\Delta H=C_{\mathrm{p}} \Delta T$
The units of C_{p} are J / K or $\mathrm{J} /{ }^{\circ} \mathrm{C}$ (remember that ΔT is the same whether its measured in ${ }^{\circ} \mathrm{C}$ or in K).
Sometimes, we tabulate heat capacities in per mole or per gram values.
In these cases, we can think of modifying our equation for enthalpy to be
$\Delta H=n C_{p} \Delta T$ (for molar heat capacity values)
OR
$\Delta H=m C_{p} \Delta T$ (for specific heat values).
(Obviously, these equations hold C_{p} to be independent of temperature. In reality, while that's a reasonable estimate for our purposes, it is not strictly correct, The heat capacity of any substance changes slightly with changessintemperatureur)

- $\Delta H=\Delta U+P \Delta V$.
- At constant pressure, we measure heat as $\Delta H=q_{p}$, and hence the heat capacity we need to use is C_{p},

$$
G_{F}=\frac{\Delta I}{\Delta T}
$$

- At constant volume, the heat change we measure is $\Delta U=q_{v}$ and the heat capacity C_{v}

$$
G_{V}=\frac{\Delta U}{\Delta T}
$$

For Ideal Gas

- In many substances, the two heat capacities differ considerably.
- Consider one mole of ideal gas. We have
- $\Delta H-\Delta U=\Delta(P V)=R \Delta T$

$$
\frac{\Delta H}{\Delta T}-\frac{\Delta U}{\Delta T}=R
$$

Therefore
$\boldsymbol{C}_{\mathrm{p}}-\boldsymbol{C}_{\mathrm{v}}=\boldsymbol{R}$ for one mole of ideal gas

For water, $\quad C_{\mathrm{p}}-C_{\mathrm{v}}=0.075 R$
For benzene $C_{\mathrm{p}}-C_{\mathrm{v}}=5.1 R$

- Let's do an example where we look at the $P V$ work done.
- When 2.00 mol of $\mathrm{SO}_{2}(\mathrm{~g})$ react completely with $1.00 \mathrm{~mol} \mathrm{O}_{2}(\mathrm{~g})$ to form 2.00 mol of $\mathrm{SO}_{3}(\mathrm{~g})$ at $25{ }^{\circ} \mathrm{C}$ and constant pressure of $1.00 \mathrm{~atm}, 198 \mathrm{~kJ}$ of energy is released as heat. Calculate ΔU and ΔH for this reaction.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

The heat released is $\left|q_{\mathrm{p}}\right|$ since it was measured under constant pressure conditions. so we can say,
$\Delta H=-198 \mathrm{~kJ}$ (negative sign since the heat is released, i.e., exothermic) $\Delta U=\Delta H-P \Delta V$
$\Delta U=\Delta H-\Delta n_{\mathrm{g}} R T$
or
$\Delta H=\Delta U+\Delta n_{\mathrm{g}} R T$
$\Delta n=$ (\#moles product gas - \#moles reactant gas) per mole of equation

$$
\begin{aligned}
\Delta n & =2-3=-1 . \\
\Delta U & =-198 \mathrm{~kJ} / \mathrm{mol}+-\left(-1 \times 8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K}\right) \\
& =-198 \mathrm{~kJ} / \mathrm{mol}+2.48 \mathrm{~kJ} / \mathrm{mol} \\
& =-196 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Expansion of Ideal Gas and Changes in Thermodynamic Properties

I. Isothermal Expansion of an Ideal Gas

A) Reversible isothermal Expansion
i) Work Done in Reversible Isothermal Expansion($\mathrm{w}_{\text {rev }}$)
ii) Heat Transferred in Isothermal reversible expansion $\left(\mathrm{q}_{\mathrm{rev}}\right)$
B) Irreversible isothermal Expansion
i) Work Done in irreversible Isothermal Expansion ($\mathrm{w}_{\text {irrev }}$)
A)Expansion against Constant P (Intermediate Expansion)
B)For Free Expansion
II) Adiabatic Expansion of an Ideal Gas
i) Reversible Adiabatic Expansion

Expansion of Ideal Gas and Changes in Thermodynamic Properties

I. Isothermal Expansion of an Ideal Gas

For an iso thermal Expansion or compression,

$$
\Delta U=0
$$

$\Delta H=\Delta U+n_{g} R \Delta T$
For an iso thermal Process, $\Delta \mathrm{U}=0$ \& $\Delta \mathrm{T}=0$

$$
\Delta H=0
$$

$\Delta U=q+\mathbf{w}$
Since, $\Delta U=0$

$$
w=-q
$$

A) Reversible isothermal Expansion

i) Work Done in Reversible Isothermal Expansion($\mathrm{w}_{\text {rev }}$)

$$
\begin{aligned}
& \mathrm{w}=-\int_{\mathrm{v}_{1}}^{\mathrm{v}_{2}} \mathrm{PdV} \\
& \text { By ideal gas equation } \\
& P V=n R T \\
& P=\frac{n R T}{V} \\
& \text { Substitute in (i), we get. } \\
& w=-\int_{v_{1}}^{v_{2}} \frac{n R T}{V} d v \\
& w=-n R T \int_{v_{1}}^{v_{2}} \frac{d v}{V} \\
& w=-n R T[n V]_{v_{1}}^{v_{2}} \quad\left[\because \int \frac{d x}{x}=\ln _{k}\right] \\
& w=-n R T\left[\ln V_{2}-\ln V_{1}\right] \\
& w=-n R T \ln \frac{V_{2}}{V_{1}} \\
& w=-2.303 n R T \log \frac{V_{2}}{V_{1}} \\
& {[\ln x=2.303 \log x]} \\
& \text { Since } P_{1} V_{1}=P_{2} V_{2} \\
& \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}
\end{aligned}
$$

A) Reversible isothermal Expansion

ii) Heat Transferred in Isothermal reversible expansion $\left(q_{\text {rev }}\right)$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{rev}}=-\mathrm{w}_{\mathrm{rev}} \\
& \mathrm{q}_{\mathrm{rev}}=\mathrm{nRT} \ln \frac{\mathrm{v} 2}{\mathrm{v} 1} \\
& \mathrm{q}_{\mathrm{rev}}=2.303 \mathrm{nRT} \log \frac{\mathrm{v} 2}{\mathrm{v} 1} \\
& \mathrm{q}_{\mathrm{rev}}=2.303 \mathrm{nRT} \log \frac{p 2}{p 1}
\end{aligned}
$$

B) Irreversible isothermal Expansion
 i) Work Done in Reversible Isothermal Expansion($\mathrm{w}_{\text {irrev }}$)

- $\mathrm{w}_{\text {irrev }}=\int_{\mathrm{V} 1}^{\mathrm{V} 2}-P_{\text {ext }} \cdot d V$
A)Expansion against Constant P (Intermediate Expansion)

$$
\mathrm{W}=-\mathrm{P}_{\mathrm{ext}} . \Delta V
$$

B)For Free Expansion

$$
w=0
$$

II) Adiabatic Expansion of an Ideal Gas

Adiabatic Expansion- No heat enters or leaves the system

$q=0$
$\Delta U=q+w$
$\Delta U=\mathbf{w}$ and, as a result. ΔU is negative, i.e. internal ense of the internal energy of the syst and, as a resuln. ΔU, work is done at the expens drops. (In an adiabatic compresters and consequently, the temperature of the sy and consequently, the result would just be the opposite.)
We know that for 1 mole of a gas.

$$
C_{v}=\left(\frac{\partial U}{\partial T}\right)_{v}
$$

For an ideal gas, U is independent of the volume and hence it is permissible to wrile,
Or

$$
\begin{aligned}
C_{v} & =\frac{d U}{d T} \\
d U & =C_{V} d T
\end{aligned}
$$

For a finite change, we may write:

$$
\Delta U=\int_{T_{1}}^{T_{2}} C_{V} d T \text { for } 1 \text { mole of an ideal gas }
$$

i.e.,

$$
\begin{equation*}
\Delta U=C_{V}\left(T_{2}-T_{1}\right) \text { for } 1 \text { mole of an ideal gas } \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\Delta U=n C_{V}\left(T_{2}-T_{1}\right) \tag{4}
\end{equation*}
$$

$\Delta U=n C_{v}\left(T_{2}-T_{1}\right)$
From (2) and (5), $\quad \Delta U=w=n C_{V}\left(T_{2}-T_{1}\right)$
We know: $\quad \Delta H=\Delta U+\Delta(P V)$
For 1 mole of an ideal gas,

$$
\begin{array}{rlr}
\Delta H & =\Delta U+\Delta(R T) & {[\because P V=R T]} \\
& =\Delta U+R \Delta T \\
& =C_{V} \Delta T+R \Delta T & {\left[\because \Delta U=C_{V} \Delta T\right]} \\
& =\left(C_{v}+R\right) \Delta T \\
& =C_{P} \Delta T \tag{6}\\
& =C_{P}\left(T_{2}-T_{1}\right) &
\end{array} \quad\left[\because C_{P}=C_{V}+R\right]
$$

For n moles of an ideal gas,

$$
\Delta H=n C_{P}\left(T_{2}-T_{1}\right)
$$

Tosum up. for any adiabatic process, reversible or irreversible,

$$
\begin{aligned}
q & =0 \\
w & =\Delta U=n C_{V} \Delta T=n C_{v}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

is seen that the same expression can
It is seen irreversible adiabatic expansion used to ealculate the work done in a reversible temperature $\left(T_{2}\right)$, and hence ΔT, depen. But it should be understood that the final carried out, i.e. Whether reversible or irrev upon the manner in which the process is when the expansion is carried out undeversible. Maximum work will be performed temperature in a reversible adiabatic expansible conditions.) So, the decrease in irreversible process. i.e., $T_{2}($ rev $)<T_{2}$ (irrev) son will be greater than that in the negative for the reversible process than for the that ΔT (i.e., $T_{2}-T_{1}$) will be more So, if the process is reversible, we can replat corresponding irreversible process.

Expression expansion of an ideal gas can $-V, P-V$ and T - P relationships in a reversible adiabatic (a) Relation between temperature and in the following manner.

Consider the reversi that for 1 mole of a gas,

$$
C_{v}=\left(\frac{\partial U}{\partial T}\right)_{v}
$$

For an ideal gas, U is independent of the volume and hence it is permissible to write:

$$
\begin{align*}
C_{v} & =\frac{d U}{d T} \\
d U & =C_{v} d T \tag{1}
\end{align*}
$$

From the first law of thermodynamics, for reversible adiabatic expansion,

$$
\begin{align*}
d U & =d w & {[\because d q=0] } \\
& =-P d V & {[\because d w=-P d V] } \tag{2}
\end{align*}
$$

From eqns. (1) and (2), we get:

$$
C_{V} d T=-P d V
$$

Since for 1 mole of an ideal gas, $P=R T / V$, we get :

120 Privsical Chemastay-1

$$
\begin{aligned}
& \text { Or } \quad C_{V} \frac{d T}{T}=-R \frac{d V}{V} \\
& \text { Assuming } C_{V} \text { to be independent of temperature, }
\end{aligned}
$$

$$
\begin{aligned}
C_{V} d T & =-R T \frac{d V}{V} \\
C_{V} \frac{d T}{T} & =-R \frac{d V}{V}
\end{aligned}
$$

i.e.

$$
C_{V} \int_{T_{1}}^{T_{2}} \frac{d T}{T}=-R \int_{V_{1}}^{V_{2}} \frac{d V}{V}
$$

$$
C_{V} \ln \frac{T_{2}}{T_{1}}=-R \ln \frac{V_{2}}{V_{1}}
$$

Or

$$
\begin{equation*}
C_{V} \ln \frac{T_{2}}{T_{1}}=R \ln \frac{V_{1}}{V_{2}} \tag{4}
\end{equation*}
$$

Since $C_{p}-C_{V}=R$ for 1 mole of an ideal gas, we may write:

Or

$$
C_{V} \ln \frac{T_{2}}{T_{1}}=\left(C_{P}-C_{V}\right) \ln \frac{V_{1}}{V_{2}}
$$

$>$ Or

$$
\begin{aligned}
\ln \frac{T_{2}}{T_{1}} & =\frac{C_{P}-C_{V}}{C_{V}} \ln \frac{V_{1}}{V_{2}} \\
\ln \frac{T_{2}}{T_{1}} & =\left(\frac{C_{P}}{C_{V}}-1\right) \ln \frac{V_{1}}{V_{2}}
\end{aligned}
$$

Putting $C_{p} / C_{V}=\gamma_{0}$ we get:

Or

$$
\ln \frac{T_{2}}{T_{1}}=(\gamma-1) \ln \frac{V_{1}}{V_{2}}
$$

$$
\ln \frac{T_{2}}{T_{1}}=\ln \left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}
$$

Or

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1} \tag{5}
\end{equation*}
$$

Or

$$
\begin{aligned}
& T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1} \quad \text { where } \gamma=C_{P} / C_{V} . \\
& T V^{\gamma-1}=\text { constant }
\end{aligned}
$$

Since $\gamma>1$ and also since $V_{2}>V_{1}$ in an expansion, it is obvious from Eqn. (6) that $T_{2}<T_{1}$. In other words, adjabatic expansion of a gas causes a drop in its temperature (i.e., the gas cools)

(b) Relation between volume and pressure

 For an ideal gas$$
\begin{aligned}
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}} \\
\frac{V_{1}}{V_{2}} \times \frac{T_{2}}{T_{1}} & =\frac{P_{2}}{P_{1}}
\end{aligned}
$$

Since $\left(T_{2} / T_{1}\right)=\left(V_{1} / V_{2}\right)^{\gamma-1}$, we can write:

$$
\frac{V_{1}}{V_{2}} \times\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=\frac{P_{2}}{P_{1}}
$$

Or

$$
\begin{array}{ll}
\text { Or } & \left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=\frac{P_{2}}{P_{1}} \\
\text { Or } & P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \quad \text { where } \gamma=C_{P} / C_{V} \\
\text { Or } & P V^{\gamma}=\text { constant }
\end{array}
$$

Or
(c) Relation between temperature and pressure $\quad \Gamma$

From eqn. (7) or (8), we get:

$$
\frac{V_{1}}{V_{2}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{y}}
$$

Let us take the $(\gamma-1)^{\text {th }}$ power of both sides. Then

$$
\begin{equation*}
\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1} \cdot=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}} \tag{10}
\end{equation*}
$$

From eqn. (10) in eqn. (5), we get

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{T-1}{\gamma}} \text { where } \gamma=C_{P} / C_{V} \tag{1I}
\end{equation*}
$$

Lovely Jacob A,Asst.Prof.in Chemistry,Little

Another way of writing the above relationship is:

$$
\begin{align*}
\frac{T_{2}}{T_{1}} & =\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1 \eta}{\gamma}} \\
T_{1} P_{1}^{(1-\eta) / \gamma} & =T_{2} P_{2}^{(1-\gamma) / \gamma} \\
T P^{(1-\eta) / \gamma} & =\text { constant }
\end{align*}
$$

Work done in a reversible adiabatic expansion of an ideal gas

We have already shown that the work done in an adiabatic expansion is given by

$$
w=\Delta U=n C_{V}\left(T_{2}-T_{1}\right)
$$

Another convenient expression for reversible adiabatic expansion can be derive from the above equation.

$$
w=n C_{V}\left(T_{2}-T_{1}\right)
$$

Dividing numerator and denominator by $\left(C_{P}-C_{V}\right)$ and rearranging:

$$
\begin{aligned}
w & =\frac{n\left(C_{P}-C_{V}\right)\left(T_{2}-T_{1}\right)}{\frac{\left(C_{P}-C_{V}\right) / C_{V}}{}} \\
& =-\frac{n\left(C_{P}-C_{V}\right)\left(T_{2}-T_{1}\right)}{\left(C_{V}-C_{P}\right) / C_{V}} \\
& =-\frac{n\left(C_{P}-C_{V}\right)\left(T_{2}-T_{1}\right)}{1-\left(C_{P} / C_{V}\right)}
\end{aligned}
$$

Putting $C_{P}-C_{V}=R$, and $C_{P} / C_{V}=\gamma$, we get

$$
\begin{equation*}
w=-\frac{n R\left(T_{2}-T_{1}\right)}{1-\gamma} \tag{IIS}
\end{equation*}
$$

Whenever the process is considered under reversible conditions, we may replact ' w ' with ' $w_{\text {max }}$ '.

Reversible Isothermal expansion of Real gas

Reversible isothermal expansion of a real gas - Expressions for w, $\boldsymbol{\Delta U}, \Delta \boldsymbol{\Delta H}$ and q for a van der Waals gas
(i) Expression for work of expansion (w_{m})

The general equation for the reversible work of expansion is:

$$
w_{r e v}=-\int_{V_{1}}^{V_{2}} P d V
$$

Joule Thomson Effect

Joule-Thomson effect

Consider the expansion of an ideal gas into a vacuum (i.e., free expansion) under adiabatic conditions. Obviously, no heat is absorbed or evolved, i.e., $q=0$. Further, since the external pressure $\left(P_{e x x}\right)=0$, it follows that $w=-P_{e x t} \Delta V=0$, i.e., no work is done. Then, from the first law, for an adiabatic free expansion of an ideal gas,

$$
\begin{aligned}
\Delta U & =q+w \\
& =0+0=0
\end{aligned}
$$

i.e., No internal energy change occurs. Consequently, the temperature of the system remains the same before and after expansion.
This is, however, not the case with real gases.
When a gas under high pressure is allowed to expand under adiabatic conditions through a porous plug into a region of low pressure, there occurs a change in its temperature. This phenomenon is termed Joule-Thomson effect. The difference in temperature observed is proportional to the pressure difference maintained. [The phenomenon is so named because it was first observed by Joule and Thomson (Lord Kelvin) in the middle of the $19^{\text {th }}$ century.]

Thank you

Lovely Jacob A,Asst.Prof.in Chemistry, Little
Flower College, Guruvayoor

