Random Numbers in Python

Riya Jacob K
Dept of BCA
2020-21

What is a Random Number?

- Random number does NOT mean a different number every time.
- Random means something that can not be predicted logically.

Pseudo Random and True Random

- Computers work on programs, and programs are definitive set of instructions. So it means there must be some algorithm to generate a random number as well.
- If there is a program to generate random number it can be predicted, thus it is not truly random.
- Random numbers generated through a generation algorithm are called pseudo random.
- Can we make truly random numbers?
- Yes. In order to generate a truly random number on our computers we need to get the random data from some outside source. This outside source is generally our keystrokes, mouse movements, data on network etc.
- We do not need truly random numbers, unless its related to security (e.g. encryption keys) or the basis of application is the randomness (e.g. Digital roulette wheels).
- Here we will discussed about pseudo random numbers.

Generate Random Number

- NumPy (NumPy is a python library) offers the random module to work with random numbers.
- Example
- Generate a random integer from 0 to 100:
from numpy import random
$x=$ random.randint(100)
print(x)
- Output

43

Generate Random Float

- The random module's rand() method returns a random float between 0 and 1.
- Example

Generate a random float from 0 to 1 :
from numpy import random
$x=$ random.rand()
print(x)

- Output
0.4140522484659195

Generate Random Array

- In NumPy we work with arrays, and you can use the two methods from the above examples to make random arrays.

Integers

- The randint() method takes a size parameter where you can specify the shape of an array.

Example

- Generate a 1-D array containing 5 random integers from 0 to 100:
from numpy import random
$\mathrm{x}=$ random.randint(100, size=(5))
print(x)
Output
[2561492]

Generate 2D Integer Random Array

- Example

Generate a 2-D array with 3 rows, each row containing 5 random integers from 0 to 100:
from numpy import random
$x=$ random.randint $(100, \operatorname{size}=(3,5))$
print(x)

- Output
[[90 991130 34]
[66 406336 37]
[63 358951 58]]

Generate 1D Float Random Array

- The rand() method also allows you to specify the shape of the array.
- Example

Generate a 1-D array containing 5 random floats:
from numpy import random
$x=$ random.rand(5)
print(x)

Output

[0.4305005 0.16678100 .99896590 .4566901 $0.3199066]$

Generate 2D Float Random Array

- Example

Generate a 2-D array with 3 rows, each row containing 5 random numbers:
from numpy import random
$x=$ random.rand $(3,5)$ print(x)

- Output
- [[0.14252791 0.446910710 .592742880 .738734870 .22082345$]$
[0.004842420 .362942060 .885075940 .569484790 .15075563$]$
[0.69195833 0.751113790 .927807850 .579864710 .6203633]]

Generate Random Number From Array

- The choice() method allows you to generate a random value based on an array of values.
- The choice() method takes an array as a parameter and randomly returns one of the values.

Example

- Return one of the values in an array:
from numpy import random
$x=$ random.choice([3, 5, 7, 9])
print(x)
Output
7
- The choice() method also allows you to return an array of values.
- Add a size parameter to specify the shape of the array.
- Example
- Generate a 2-D array that consists of the values in the array parameter (3, 5, 7, and 9):
from numpy import random
$x=$ random.choice $([3,5,7,9]$, size $=(3,5))$ print(x)
- Output
[[59759]
[37797]
[37995]]

Random Module-Functions

Method	Description
seed().	Initialize the random number generator
getstate().	Returns the current internal state of the random number generator
setstate().	Restores the internal state of the random number generator
getrandbits().	Returns a number representing the random bits
$\underline{\text { randrange(). }}$	Returns a random number between the given range
$\underline{\text { randint (). }}$	Returns a random number between the given range
$\underline{\text { choice(). }}$	Returns a random element from the given sequence
$\underline{\text { choices(). }}$	Returns a list with a random selection from the given sequence
$\underline{\text { shuffle(). }}$	Takes a sequence and returns the sequence in a random order
$\underline{\text { sample(). }}$	Returns a given sample of a sequence
$\underline{\text { random(). }}$	Returns a random float number between 0 and 1

uniform().	Returns a random float number between two given parameters
triangular().	Returns a random float number between two given parameters, you can also set a mode parameter to specify the midpoint between the two other parameters
betavariate()	Returns a random float number between 0 and 1 based on the Beta distribution (used in statistics)
expovariate()	Returns a random float number between 0 and 1 , or between 0 and -1 if the parameter is negative, based on the Exponential distribution (used in statistics)
gammavariate()	Returns a random float number between 0 and 1 based on the Gamma distribution (used in statistics)
gauss()	Returns a random float number between 0 and 1 based on the Gaussian distribution (used in probability theories)
lognormvariate()	Returns a random float number between 0 and 1 based on a log-normal distribution (used in probability theories)
normalvariate()	Returns a random float number between 0 and 1 based on the normal distribution (used in probability theories)

voommisesvarite() Returns a random float number between 0 and 1 based on the von Mises distribution (used in directional statisticis)
paretovariate() Returns a random flat number between 0 and 1 based on the Parcto distribution (used in probability theories)
weibullvarite() Returns a random float number between 0 and 1 based on the Weibull distribution (used in statisticics)

Thank You

