INTRODUCTION TO MEASURE THEORY

ALPHY JOSE

JANUARY 2020

ALPHY JOSE INTRODUCTION TO MEASURE THEORY

DEFINITION

Definition

Measure is a set function satisfying the following properties

- Measure of an interval is its length
- **2** Measure is translation invariant
- Measure is countably additive over countable disjoint

unions of sets

Outer measure

Outer measure

For a set A of real numbers, consider the countable collections

 $\{I_k\}$ of non empty open bounded intervals covering A. The

outer measure of A, $m^*(A)$ is defined by

 $m^*(A) = \inf\{\sum_{k=1}^{\infty} l(I_k) \mid A \subseteq \cup I_k\}$

Properties of Outer measure

Properties of Outer measure

- * Outer measure is defined for all sets of real numbers
- * The outer measure of an interval is its length
- * Outer measure is translation invariant
- * Outer measure is countably sub additive over any countable

collection of sets, disjoint or not

Measurable sets

Definition

A set E is said to be **measurable** provided for any set A,

$$m^{*}(A) = m^{*}(A \cap E) + m^{*}(A \cap E^{C})$$

ALPHY JOSE INTRODUCTION TO MEASURE THEORY

Measurable sets

Properties Measurable sets

- The empty set is measurable
- **2** The set \mathbb{R} is measurable
- A set is measurable if and only if its compliment is measurable
- Any set of outer measure zero is measurable. In particular,

any countable set is measurable.

Measurable sets

Properties Measurable sets

① The union of a finite collection of measurable sets is

measurable.

• The union of a countable collection of measurable sets is

measurable.

σ Algebra

Definition

A collection of subsets of is called a σ Algebra if it is closed

with respect of the formation of complements and countable

unions.

By De-Morgan's Law such a collection will be closed with

respect to the formation of countable intersections.

Remarks

Remarks

- Every interval is measurable
- **2** The translate of a measurable set is measurable.

σ Algebra of Measurable sets

σ Algebra of Measurable sets

By the properties of measurable sets, the collection of all

measurable sets in $\mathbb R$ forms a σ Algebra.

Also it will contain all the Borel sets in , ie, Each interval, each

open set, each closed set, each G_{δ} set and each F_{σ} set is

measurable.

HAVE A NICE DAY

ALPHY JOSE INTRODUCTION TO MEASURE THEORY