
Context Free GrammarsContext Free Grammars

Sr. Nisha C D
Assistant Professor, Dept. of Computer Science
Little Flower College, Guruvayoor

Context Free GrammarsContext Free Grammars

 One or more non terminal symbolsOne or more non terminal symbols
 Lexically distinguished, e.g. upper caseLexically distinguished, e.g. upper case

 Terminal symbols are actual characters in Terminal symbols are actual characters in
the languagethe languagethe languagethe language
Or they can be tokens in practiceOr they can be tokens in practice

 One nonOne non--terminal is the distinguished start terminal is the distinguished start
symbol.symbol.

Grammar RulesGrammar Rules

 NonNon--terminal ::= sequenceterminal ::= sequence
Where sequence can be nonWhere sequence can be non--terminals or terminals or

terminalsterminals

 At least some rules must have ONLY At least some rules must have ONLY  At least some rules must have ONLY At least some rules must have ONLY
terminals on the right sideterminals on the right side

Example of GrammarExample of Grammar

 S ::= (S) S ::= (S)
 S ::= <S>S ::= <S>
 S ::= (empty)S ::= (empty)

This is the language D2, the language of This is the language D2, the language of  This is the language D2, the language of This is the language D2, the language of
two kinds of balanced parenstwo kinds of balanced parens
 E.g. ((<<>>))E.g. ((<<>>))

 Well not quite D2, since that should allow Well not quite D2, since that should allow
things like (())<>things like (())<>

Example, continuedExample, continued

 So add the ruleSo add the rule
 S ::= SSS ::= SS

 And that is indeed D2And that is indeed D2
But this is ambiguousBut this is ambiguous But this is ambiguousBut this is ambiguous
 ()<>() can be parsed two ways()<>() can be parsed two ways
 ()<> is an S and () is an S()<> is an S and () is an S
 () is an S and <>() is an S() is an S and <>() is an S

 Nothing wrong with ambiguous grammarsNothing wrong with ambiguous grammars

BNF (Backus Naur/Normal Form)BNF (Backus Naur/Normal Form)

 Properly attributed to Sanskrit scholarsProperly attributed to Sanskrit scholars
 An extension of CFG withAn extension of CFG with
Optional constructs in []Optional constructs in []
 Sequences {} = 0 or moreSequences {} = 0 or more Sequences {} = 0 or moreSequences {} = 0 or more
 Alternation |Alternation |

 All these are just short handsAll these are just short hands

BNF ShorthandsBNF Shorthands

 IF ::= if EXPR then STM [else STM] fiIF ::= if EXPR then STM [else STM] fi
 IF ::= if EXPR then STM fiIF ::= if EXPR then STM fi
 IF ::= if EXPR then STM else STM fiIF ::= if EXPR then STM else STM fi

 STM ::= IF | WHILESTM ::= IF | WHILE STM ::= IF | WHILESTM ::= IF | WHILE
 STM ::= IFSTM ::= IF
 STM ::= WHILESTM ::= WHILE

 STMSEQ ::= STM {;STM}STMSEQ ::= STM {;STM}
 STMSEQ ::= STMSTMSEQ ::= STM
 STMSEQ ::= STM ; STMSEQSTMSEQ ::= STM ; STMSEQ

Programming Language SyntaxProgramming Language Syntax

 Expressed as a CFG where the grammar is Expressed as a CFG where the grammar is
closely related to the semanticsclosely related to the semantics

 For exampleFor example
 EXPR ::= PRIMARY {OP | PRIMARY}EXPR ::= PRIMARY {OP | PRIMARY} EXPR ::= PRIMARY {OP | PRIMARY}EXPR ::= PRIMARY {OP | PRIMARY}
OP ::= + | *OP ::= + | *

 Not good, better isNot good, better is
 EXPR ::= TERM | EXPR + TERMEXPR ::= TERM | EXPR + TERM
 TERM ::= PRIMARY | TERM * PRIMARYTERM ::= PRIMARY | TERM * PRIMARY

 This implies associativity and precedenceThis implies associativity and precedence

PL Syntax ContinuedPL Syntax Continued

 No point in using BNF for tokens, since no No point in using BNF for tokens, since no
semantics involvedsemantics involved
 ID ::= LETTER | LETTER IDID ::= LETTER | LETTER ID

 Is actively confusing since the BC of ABC Is actively confusing since the BC of ABC  Is actively confusing since the BC of ABC Is actively confusing since the BC of ABC
is not an identifier, and anyway there is no is not an identifier, and anyway there is no
tree structure heretree structure here

 Better to regard ID as a terminal symbol. Better to regard ID as a terminal symbol.
In other words grammar is a grammar of In other words grammar is a grammar of
tokens, not characterstokens, not characters

Grammars and TreesGrammars and Trees

 A Grammar with a starting symbol A Grammar with a starting symbol
naturally indicates a tree representation of naturally indicates a tree representation of
the programthe program

 Non terminal on left is root of tree nodeNon terminal on left is root of tree node Non terminal on left is root of tree nodeNon terminal on left is root of tree node
 Right hand side are descendentsRight hand side are descendents
 Leaves read left to right are the terminals Leaves read left to right are the terminals

that give the tokens of the programthat give the tokens of the program

The Parsing ProblemThe Parsing Problem

 Given a grammar of tokensGiven a grammar of tokens
 And a sequence of tokensAnd a sequence of tokens
 Construct the corresponding parse treeConstruct the corresponding parse tree

Giving good error messagesGiving good error messages Giving good error messagesGiving good error messages

General ParsingGeneral Parsing

 Not known to be easier than matrix Not known to be easier than matrix
multiplicationmultiplication
 Cubic, or more properly n**2.71.. (whatever Cubic, or more properly n**2.71.. (whatever

that unlikely constant isthat unlikely constant is))that unlikely constant isthat unlikely constant is))
 In practice almost always linearIn practice almost always linear
 In any case not a significant amount of timeIn any case not a significant amount of time
 Hardest part by far is to give good messagesHardest part by far is to give good messages

Two Basic ApproachesTwo Basic Approaches

 Table driven parsersTable driven parsers
 Given a grammar, run a program that Given a grammar, run a program that

generates a set of tables for an automatongenerates a set of tables for an automaton
 Use the standard automaton with these tables Use the standard automaton with these tables  Use the standard automaton with these tables Use the standard automaton with these tables

to generate the trees.to generate the trees.
 Grammar must be in appropriate form (not Grammar must be in appropriate form (not

always so easy)always so easy)
 Error detection is tricky to automateError detection is tricky to automate

The Other ApproachThe Other Approach

 Hand ParserHand Parser
Write a program that calls the scanner and Write a program that calls the scanner and

assembles the treeassembles the tree
Most natural way of doing this is called Most natural way of doing this is called Most natural way of doing this is called Most natural way of doing this is called

recursive descent.recursive descent.
Which is a fancy way of saying scan out what Which is a fancy way of saying scan out what

you are looking for you are looking for 

Recursive Descent in ActionRecursive Descent in Action

 Each rule generates a procedure to scan Each rule generates a procedure to scan
out the procedure.out the procedure.
 This procedure simply scans out its right hand This procedure simply scans out its right hand

side in sequenceside in sequenceside in sequenceside in sequence

 For exampleFor example
 IF ::= if EXPR then STM fi;IF ::= if EXPR then STM fi;
 Scan “if”, call EXPR, scan “then”, call STM, Scan “if”, call EXPR, scan “then”, call STM,

scan “fi” done.scan “fi” done.

Recursive Descent in ActionRecursive Descent in Action

 For an alternation we have to figure out For an alternation we have to figure out
which way to go (how to do that, more which way to go (how to do that, more
later, could backtrack, but that’s later, could backtrack, but that’s
exponential)exponential)exponential)exponential)

 For optional stuff, figure out if item is For optional stuff, figure out if item is
present and scan if it ispresent and scan if it is

 For a {repeated} construct program a loop For a {repeated} construct program a loop
which scans as long as item is presentwhich scans as long as item is present

Left Recursion Left Recursion 

 Left recursion is a problemLeft recursion is a problem
 STMSEQ ::= STMSEQ STM | STMSTMSEQ ::= STMSEQ STM | STM

 If you go down the left path, you are If you go down the left path, you are
quickly stuck in an infinite recursive loop, quickly stuck in an infinite recursive loop, quickly stuck in an infinite recursive loop, quickly stuck in an infinite recursive loop,
so that will not do.so that will not do.

 Change to a loopChange to a loop
 STMSEQ ::= STM {STM}STMSEQ ::= STM {STM}

Ambiguous Alternation Ambiguous Alternation 

 If two alternativesIf two alternatives
 A ::= B | CA ::= B | C

 Then which way to goThen which way to go
 If set of initial tokens possible for B (called If set of initial tokens possible for B (called  If set of initial tokens possible for B (called If set of initial tokens possible for B (called

First(B)) is different from set of initial tokens First(B)) is different from set of initial tokens
of C, then we can tellof C, then we can tell

 For exampleFor example
STM ::= IFSTM | WHILESTMSTM ::= IFSTM | WHILESTM
 If next token “if” then IFSTM, else if next token is If next token “if” then IFSTM, else if next token is

“while then WHILESTM“while then WHILESTM

Really Ambiguous Cases Really Ambiguous Cases 

 Suppose FIRST sets are not disjointSuppose FIRST sets are not disjoint
 IFSTM ::= IF_SIMPLE | IF_ELSEIFSTM ::= IF_SIMPLE | IF_ELSE
 IF_SIMPLE ::= if EXPR then STM fiIF_SIMPLE ::= if EXPR then STM fi
 IF_ELSE ::= if EXPR then STM else STM fiIF_ELSE ::= if EXPR then STM else STM fi IF_ELSE ::= if EXPR then STM else STM fiIF_ELSE ::= if EXPR then STM else STM fi

 Factor left sideFactor left side
 IFSTM ::= IFCOMMON IFTAILIFSTM ::= IFCOMMON IFTAIL
 IFCOMMON ::= if EXPR then STMIFCOMMON ::= if EXPR then STM
 IFTAIL ::= fi | else STM fiIFTAIL ::= fi | else STM fi

 Last alternation is now distinguishedLast alternation is now distinguished

Recursive Descent, ErrorsRecursive Descent, Errors

 If you don’t find what you are looking for, If you don’t find what you are looking for,
you know exactly what you are looking for you know exactly what you are looking for
so you can usually give a useful messageso you can usually give a useful message

 IFSTM ::= if EXPR then STM fi;IFSTM ::= if EXPR then STM fi; IFSTM ::= if EXPR then STM fi;IFSTM ::= if EXPR then STM fi;
 Parse if a > b then b := g ;Parse if a > b then b := g ;
Missing FI!Missing FI!

Recursive Descent, Last WordRecursive Descent, Last Word

 Don’t need much formalism hereDon’t need much formalism here
 You know what you are looking forYou know what you are looking for
 So scan it in sequenceSo scan it in sequence

Called recursive just because rules can be Called recursive just because rules can be  Called recursive just because rules can be Called recursive just because rules can be
recursive, so naturally maps to recursive recursive, so naturally maps to recursive
languagelanguage

 Really not hard at all, and not something Really not hard at all, and not something
that requires a lot of special knowledgethat requires a lot of special knowledge

Table Driven TechniquesTable Driven Techniques

 There are parser generators that can be There are parser generators that can be
used as black boxes, e.g. bisonused as black boxes, e.g. bison

 But you really need to know how they But you really need to know how they
workworkworkwork

 And that we will look at next timeAnd that we will look at next time

