Context Free Grammars

Sr. Nisha C D
Assistant Professor, Dept. of Computer Science
Little Flower College, Guruvayoor

Context Free Grammars

e One or more non terminal symbols
e Lexically distinguished, e.g. upper case

e Terminal symbols are actual characters in
the language
e Or they can be tokens in practice

e One non-terminal is the distinguished start
symbol.

Grammar Rules

e Non-terminal ::= sequence

e Where sequence can be non-terminals or
terminals

e At least some rules must have ONLY
terminals on the right side

Example of Grammar

oS ::=(S)

oS i:= <5>

e S ::= (empty)

e This is the language D2, the language of
two kinds of balanced parens

o E.g. ((<<>>))

e Well not quite D2, since that should allow
things like (())<>

Example, continued

e SO add the rule
oS ::=SS
e And that is indeed D2

e But this is ambiguous
® ()<>() can be parsed two ways
e()<>isanSand()isan S
e()isanSand <>()isan S

e Nothing wrong with ambiguous grammars

BNF (Backus Naur/Normal Form)

e Properly attributed to Sanskrit scholars

e An extension of CFG with
e Optional constructs in []
e Sequences {} = 0 or more
e Alternation |

e All these are just short hands

BNF Shorthands

o IF ::= if EXPR then STM [else STM] fi
o IF ::= if EXPR then STM fi
e IF ::= if EXPR then STM else STM fi

e STM ::= IF | WHILE

e STM ::=1IF
e STM ::= WHILE
e STMSEQ ::= STM {;STM}
e STMSEQ ::= STM
e STMSEQ ::= STM ; STMSEQ

Programming Language Syntax

e Expressed as a CFG where the grammar is
closely related to the semantics

e For example
e EXPR ::= PRIMARY {OP | PRIMARY?}
eOP ::i=+ | *
e Not good, better is
e EXPR ::= TERM | EXPR + TERM
e TERM ::= PRIMARY | TERM * PRIMARY

e This implies associativity and precedence

PL Syntax Continued

e No point in using BNF for tokens, since no
semantics involved

e ID ::=LETTER | LETTER ID

e Is actively confusing since the BC of ABC
is not an identifier, and anyway there is no
tree structure here

e Better to regard ID as a terminal symbol.
In other words grammar is a grammar of
tokens, not characters

Grammars and Trees

e A Grammar with a starting symbol
naturally indicates a tree representation of
the program

e Non terminal on left is root of tree node
e Right hand side are descendents

e Leaves read left to right are the terminals
that give the tokens of the program

The Parsing Problem

e Given a grammar of tokens

e And a sequence of tokens

e Construct the corresponding parse tree
e Giving good error messages

General Parsing

e Not known to be easier than matrix
multiplication

e Cubic, or more properly n**2.71.. (whatever
that unlikely constant is)

e In practice almost always linear
e In any case not a significant amount of time
e Hardest part by far is to give good messages

Two Basic Approaches

e Table driven parsers

e Given a grammar, run a program that
generates a set of tables for an automaton

e Use the standard automaton with these tables
to generate the trees.

e Grammar must be in appropriate form (not
always so easy)

e Error detection is tricky to automate

The Other Approach

e Hand Parser

e Write a program that calls the scanner and
assembles the tree

e Most natural way of doing this is called
recursive descent.

e Which is a fancy way of saying scan out what
you are looking for ©

Recursive Descent in Action

e Each rule generates a procedure to scan
out the procedure.

e This procedure simply scans out its right hand
side in sequence

e For example
o IF ::= if EXPR then STM fi;

e Scan "if”, call EXPR, scan “then”, call STM,
scan “fi” done.

Recursive Descent in Action

e For an alternation we have to figure out
which way to go (how to do that, more
later, could backtrack, but that’s
exponential)

e For optional stuff, figure out if item is
present and scan if it is

e For a {repeated} construct program a loop
which scans as long as item is present

Left Recursion ®

e Left recursion is a problem
e STMSEQ ::= STMSEQ STM | STM
e If you go down the left path, you are

quickly stuck in an infinite recursive loop,
so that will not do.

e Change to a loop
e STMSEQ ::= STM {STM}

Ambiguous Alternation ®

e If two alternatives
oA::=B|C
e Then which way to go

e If set of initial tokens possible for B (called
First(B)) is different from set of initial tokens
of C, then we can tell

e For example

e STM ::= IFSTM | WHILESTM

e If next token "if” then IFSTM, else if next token is
“while then WHILESTM

Really Ambiguous Cases ®

e Suppose FIRST sets are not disjoint
e IFSTM ::= IF_SIMPLE | IF_ELSE
e IF_SIMPLE ::= if EXPR then STM fi
e IF_ELSE ::= if EXPR then STM else STM fi

e Factor left side
e IFSTM ::= IFCOMMON IFTAIL
e IFCOMMON ::= if EXPR then STM
o IFTAIL ::= fi | else STM fi

e Last alternation is now distinguished

Recursive Descent, Errors

e If you don't find what you are looking for,
you know exactly what you are looking for
so you can usually give a useful message

e IFSTM ::= if EXPR then STM fi;

e Parseifa >bthenb:=g;
e Missing FI!

Recursive Descent, Last Word

e Don't need much formalism here
e You know what you are looking for
e S0 scan it in sequence

e Called recursive just because rules can be
recursive, so naturally maps to recursive
language

e Really not hard at all, and not something
that requires a lot of special knowledge

Table Driven Techniques

e There are parser generators that can be
used as black boxes, e.g. bison

e But you really need to know how they
work

e And that we will look at next time

