
Context Free GrammarsContext Free Grammars

Sr. Nisha C D
Assistant Professor, Dept. of Computer Science
Little Flower College, Guruvayoor

Context Free GrammarsContext Free Grammars

 One or more non terminal symbolsOne or more non terminal symbols
 Lexically distinguished, e.g. upper caseLexically distinguished, e.g. upper case

 Terminal symbols are actual characters in Terminal symbols are actual characters in
the languagethe languagethe languagethe language
Or they can be tokens in practiceOr they can be tokens in practice

 One nonOne non--terminal is the distinguished start terminal is the distinguished start
symbol.symbol.

Grammar RulesGrammar Rules

 NonNon--terminal ::= sequenceterminal ::= sequence
Where sequence can be nonWhere sequence can be non--terminals or terminals or

terminalsterminals

 At least some rules must have ONLY At least some rules must have ONLY At least some rules must have ONLY At least some rules must have ONLY
terminals on the right sideterminals on the right side

Example of GrammarExample of Grammar

 S ::= (S) S ::= (S)
 S ::= <S>S ::= <S>
 S ::= (empty)S ::= (empty)

This is the language D2, the language of This is the language D2, the language of This is the language D2, the language of This is the language D2, the language of
two kinds of balanced parenstwo kinds of balanced parens
 E.g. ((<<>>))E.g. ((<<>>))

 Well not quite D2, since that should allow Well not quite D2, since that should allow
things like (())<>things like (())<>

Example, continuedExample, continued

 So add the ruleSo add the rule
 S ::= SSS ::= SS

 And that is indeed D2And that is indeed D2
But this is ambiguousBut this is ambiguous But this is ambiguousBut this is ambiguous
 ()<>() can be parsed two ways()<>() can be parsed two ways
 ()<> is an S and () is an S()<> is an S and () is an S
 () is an S and <>() is an S() is an S and <>() is an S

 Nothing wrong with ambiguous grammarsNothing wrong with ambiguous grammars

BNF (Backus Naur/Normal Form)BNF (Backus Naur/Normal Form)

 Properly attributed to Sanskrit scholarsProperly attributed to Sanskrit scholars
 An extension of CFG withAn extension of CFG with
Optional constructs in []Optional constructs in []
 Sequences {} = 0 or moreSequences {} = 0 or more Sequences {} = 0 or moreSequences {} = 0 or more
 Alternation |Alternation |

 All these are just short handsAll these are just short hands

BNF ShorthandsBNF Shorthands

 IF ::= if EXPR then STM [else STM] fiIF ::= if EXPR then STM [else STM] fi
 IF ::= if EXPR then STM fiIF ::= if EXPR then STM fi
 IF ::= if EXPR then STM else STM fiIF ::= if EXPR then STM else STM fi

 STM ::= IF | WHILESTM ::= IF | WHILE STM ::= IF | WHILESTM ::= IF | WHILE
 STM ::= IFSTM ::= IF
 STM ::= WHILESTM ::= WHILE

 STMSEQ ::= STM {;STM}STMSEQ ::= STM {;STM}
 STMSEQ ::= STMSTMSEQ ::= STM
 STMSEQ ::= STM ; STMSEQSTMSEQ ::= STM ; STMSEQ

Programming Language SyntaxProgramming Language Syntax

 Expressed as a CFG where the grammar is Expressed as a CFG where the grammar is
closely related to the semanticsclosely related to the semantics

 For exampleFor example
 EXPR ::= PRIMARY {OP | PRIMARY}EXPR ::= PRIMARY {OP | PRIMARY} EXPR ::= PRIMARY {OP | PRIMARY}EXPR ::= PRIMARY {OP | PRIMARY}
OP ::= + | *OP ::= + | *

 Not good, better isNot good, better is
 EXPR ::= TERM | EXPR + TERMEXPR ::= TERM | EXPR + TERM
 TERM ::= PRIMARY | TERM * PRIMARYTERM ::= PRIMARY | TERM * PRIMARY

 This implies associativity and precedenceThis implies associativity and precedence

PL Syntax ContinuedPL Syntax Continued

 No point in using BNF for tokens, since no No point in using BNF for tokens, since no
semantics involvedsemantics involved
 ID ::= LETTER | LETTER IDID ::= LETTER | LETTER ID

 Is actively confusing since the BC of ABC Is actively confusing since the BC of ABC Is actively confusing since the BC of ABC Is actively confusing since the BC of ABC
is not an identifier, and anyway there is no is not an identifier, and anyway there is no
tree structure heretree structure here

 Better to regard ID as a terminal symbol. Better to regard ID as a terminal symbol.
In other words grammar is a grammar of In other words grammar is a grammar of
tokens, not characterstokens, not characters

Grammars and TreesGrammars and Trees

 A Grammar with a starting symbol A Grammar with a starting symbol
naturally indicates a tree representation of naturally indicates a tree representation of
the programthe program

 Non terminal on left is root of tree nodeNon terminal on left is root of tree node Non terminal on left is root of tree nodeNon terminal on left is root of tree node
 Right hand side are descendentsRight hand side are descendents
 Leaves read left to right are the terminals Leaves read left to right are the terminals

that give the tokens of the programthat give the tokens of the program

The Parsing ProblemThe Parsing Problem

 Given a grammar of tokensGiven a grammar of tokens
 And a sequence of tokensAnd a sequence of tokens
 Construct the corresponding parse treeConstruct the corresponding parse tree

Giving good error messagesGiving good error messages Giving good error messagesGiving good error messages

General ParsingGeneral Parsing

 Not known to be easier than matrix Not known to be easier than matrix
multiplicationmultiplication
 Cubic, or more properly n**2.71.. (whatever Cubic, or more properly n**2.71.. (whatever

that unlikely constant isthat unlikely constant is))that unlikely constant isthat unlikely constant is))
 In practice almost always linearIn practice almost always linear
 In any case not a significant amount of timeIn any case not a significant amount of time
 Hardest part by far is to give good messagesHardest part by far is to give good messages

Two Basic ApproachesTwo Basic Approaches

 Table driven parsersTable driven parsers
 Given a grammar, run a program that Given a grammar, run a program that

generates a set of tables for an automatongenerates a set of tables for an automaton
 Use the standard automaton with these tables Use the standard automaton with these tables Use the standard automaton with these tables Use the standard automaton with these tables

to generate the trees.to generate the trees.
 Grammar must be in appropriate form (not Grammar must be in appropriate form (not

always so easy)always so easy)
 Error detection is tricky to automateError detection is tricky to automate

The Other ApproachThe Other Approach

 Hand ParserHand Parser
Write a program that calls the scanner and Write a program that calls the scanner and

assembles the treeassembles the tree
Most natural way of doing this is called Most natural way of doing this is called Most natural way of doing this is called Most natural way of doing this is called

recursive descent.recursive descent.
Which is a fancy way of saying scan out what Which is a fancy way of saying scan out what

you are looking for you are looking for

Recursive Descent in ActionRecursive Descent in Action

 Each rule generates a procedure to scan Each rule generates a procedure to scan
out the procedure.out the procedure.
 This procedure simply scans out its right hand This procedure simply scans out its right hand

side in sequenceside in sequenceside in sequenceside in sequence

 For exampleFor example
 IF ::= if EXPR then STM fi;IF ::= if EXPR then STM fi;
 Scan “if”, call EXPR, scan “then”, call STM, Scan “if”, call EXPR, scan “then”, call STM,

scan “fi” done.scan “fi” done.

Recursive Descent in ActionRecursive Descent in Action

 For an alternation we have to figure out For an alternation we have to figure out
which way to go (how to do that, more which way to go (how to do that, more
later, could backtrack, but that’s later, could backtrack, but that’s
exponential)exponential)exponential)exponential)

 For optional stuff, figure out if item is For optional stuff, figure out if item is
present and scan if it ispresent and scan if it is

 For a {repeated} construct program a loop For a {repeated} construct program a loop
which scans as long as item is presentwhich scans as long as item is present

Left Recursion Left Recursion

 Left recursion is a problemLeft recursion is a problem
 STMSEQ ::= STMSEQ STM | STMSTMSEQ ::= STMSEQ STM | STM

 If you go down the left path, you are If you go down the left path, you are
quickly stuck in an infinite recursive loop, quickly stuck in an infinite recursive loop, quickly stuck in an infinite recursive loop, quickly stuck in an infinite recursive loop,
so that will not do.so that will not do.

 Change to a loopChange to a loop
 STMSEQ ::= STM {STM}STMSEQ ::= STM {STM}

Ambiguous Alternation Ambiguous Alternation

 If two alternativesIf two alternatives
 A ::= B | CA ::= B | C

 Then which way to goThen which way to go
 If set of initial tokens possible for B (called If set of initial tokens possible for B (called If set of initial tokens possible for B (called If set of initial tokens possible for B (called

First(B)) is different from set of initial tokens First(B)) is different from set of initial tokens
of C, then we can tellof C, then we can tell

 For exampleFor example
STM ::= IFSTM | WHILESTMSTM ::= IFSTM | WHILESTM
 If next token “if” then IFSTM, else if next token is If next token “if” then IFSTM, else if next token is

“while then WHILESTM“while then WHILESTM

Really Ambiguous Cases Really Ambiguous Cases

 Suppose FIRST sets are not disjointSuppose FIRST sets are not disjoint
 IFSTM ::= IF_SIMPLE | IF_ELSEIFSTM ::= IF_SIMPLE | IF_ELSE
 IF_SIMPLE ::= if EXPR then STM fiIF_SIMPLE ::= if EXPR then STM fi
 IF_ELSE ::= if EXPR then STM else STM fiIF_ELSE ::= if EXPR then STM else STM fi IF_ELSE ::= if EXPR then STM else STM fiIF_ELSE ::= if EXPR then STM else STM fi

 Factor left sideFactor left side
 IFSTM ::= IFCOMMON IFTAILIFSTM ::= IFCOMMON IFTAIL
 IFCOMMON ::= if EXPR then STMIFCOMMON ::= if EXPR then STM
 IFTAIL ::= fi | else STM fiIFTAIL ::= fi | else STM fi

 Last alternation is now distinguishedLast alternation is now distinguished

Recursive Descent, ErrorsRecursive Descent, Errors

 If you don’t find what you are looking for, If you don’t find what you are looking for,
you know exactly what you are looking for you know exactly what you are looking for
so you can usually give a useful messageso you can usually give a useful message

 IFSTM ::= if EXPR then STM fi;IFSTM ::= if EXPR then STM fi; IFSTM ::= if EXPR then STM fi;IFSTM ::= if EXPR then STM fi;
 Parse if a > b then b := g ;Parse if a > b then b := g ;
Missing FI!Missing FI!

Recursive Descent, Last WordRecursive Descent, Last Word

 Don’t need much formalism hereDon’t need much formalism here
 You know what you are looking forYou know what you are looking for
 So scan it in sequenceSo scan it in sequence

Called recursive just because rules can be Called recursive just because rules can be Called recursive just because rules can be Called recursive just because rules can be
recursive, so naturally maps to recursive recursive, so naturally maps to recursive
languagelanguage

 Really not hard at all, and not something Really not hard at all, and not something
that requires a lot of special knowledgethat requires a lot of special knowledge

Table Driven TechniquesTable Driven Techniques

 There are parser generators that can be There are parser generators that can be
used as black boxes, e.g. bisonused as black boxes, e.g. bison

 But you really need to know how they But you really need to know how they
workworkworkwork

 And that we will look at next timeAnd that we will look at next time

