
SERIALIZABILITY

Lisna Thomas

BCA

SERIALIZABILITY IN DBMS-

� Some non-serial schedules may lead to

inconsistency of the database.

� Serializability is a concept that helps to identify

which non-serial schedules are correct and will

maintain the consistency of the database.maintain the consistency of the database.

SERIALIZABLE SCHEDULES

� If a given non-serial schedule of ‘n’ transactions

is equivalent to some serial schedule of ‘n’

transactions, then it is called as a serializable

schedule.

CHARACTERISTICS-

Serializable schedules behave exactly same as

serial schedules.

Thus, serializable schedules are always-

� Consistent

Recoverable� Recoverable

� Casacadeless

� Strict

TYPES OF SERIALIZABILITY

CONFLICT SERIALIZABILITY

� If a given non-serial schedule can be converted

into a serial schedule by swapping its non-

conflicting operations, then it is called as

a conflict serializable schedule.

VIEW SERIALIZABILITY

� If a given schedule is found to be view equivalent

to some serial schedule, then it is called as a view

serializable schedule.

CONCURRENCY-CONTROL PROTOCOLS

� allow concurrent schedules, but ensure that the

schedules are conflict/view serializable, and are

recoverable and maybe even cascadeless.

These protocols do not examine the precedence

graph as it is being created, instead a protocol graph as it is being created, instead a protocol

imposes a discipline that avoids non-seralizable

schedules.

LOCK BASED PROTOCOLS

� Shared Lock(S)

� Exclusive Lock (X)

SHARED LOCK(S)

� also known as Read-only lock. As the name

suggests it can be shared between transactions

because while holding this lock the transaction

does not have the permission to update data on

the data item. S-lock is requested using lock-S the data item. S-lock is requested using lock-S

instruction.

EXCLUSIVE LOCK (X)

� Data item can be both read as well as

written.This is Exclusive and cannot be held

simultaneously on the same data item. X-lock is

requested using lock-X instruction.

LOCK COMPATIBILITY MATRIX

� A transaction may be granted a lock on an item if the
requested lock is compatible with locks already held
on the item by other
transactions.

� Any number of transactions can hold shared locks on
an item, but if any transaction holds an exclusive(X) an item, but if any transaction holds an exclusive(X)
on the item no other transaction may hold any lock on
the item.

� If a lock cannot be granted, the requesting
transaction is made to wait till all incompatible locks
held by other transactions have been released. Then
the lock is granted.

UPGRADE / DOWNGRADE LOCKS

A transaction that holds a lock on an
item A is allowed under certain
condition to change the lock state
from one state to another.
Upgrade: A S(A) can be upgraded to
X(A) if Ti is the only transaction
holding the S-lock on element A.
Downgrade: We may downgrade
X(A) to S(A) when we feel that we
no longer want to write on data-

So, by now we are introduced with the
types of locks and how to apply
them. But wait, just by applying
locks if our problems could’ve been
avoided then life would’ve been so
simple! If you have done Process
Synchronization under OS you must
be familiar with one consistent
problem, starvation and Deadlock!
We’ll be discussing them shortly, no longer want to write on data-

item A. As we were holding X-lock
on A, we need not check any
conditions.

We’ll be discussing them shortly,
but just so you know we have to
apply Locks but they must follow a
set of protocols to avoid such
undesirable problems. Shortly we’ll
use 2-Phase Locking (2-PL) which
will use the concept of Locks to
avoid deadlock. So, applying simple
locking, we may not always produce
Serializable results, it may lead to
Deadlock Inconsistency.

PROBLEM

T
1

T
2

1. lock-X(B)

2. read(B)

3. B:=B-503. B:=B-50

4. write(B)

5.

6.

7.

8. lock-X(A)

9. …….

lock-S

read(A)

lock-S(B)

……

DEADLOCK

� consider the above execution phase.

Now, T1 holds an Exclusive lock over B,

and T2 holds a Shared lock over A. Consider

Statement 7, T2 requests for lock on B, while in

Statement 8 T1 requests lock on A. This as you Statement 8 T1 requests lock on A. This as you

may notice imposes a Deadlock as none can

proceed with their execution.

STARVATION

� is also possible if concurrency control manager is

badly designed. For example: A transaction may

be waiting for an X-lock on an item, while a

sequence of other transactions request and are

granted an S-lock on the same item. This may be granted an S-lock on the same item. This may be

avoided if the concurrency control manager is

properly designed.

CONCURRENCY CONTROL

PROTOCOL

Two Phase Locking –

A transaction is said to follow Two Phase

Locking protocol if Locking and Unlocking can be

done in two phases.

� Growing Phase: New locks on data items may � Growing Phase: New locks on data items may

be acquired but none can be released.

� Shrinking Phase: Existing locks may be

released but no new locks can be acquired.

PROBLEM

T1 T2

1. LOCK-S(A)

2.

3. LOCK-X(B)
LOCK-S(A)

3. LOCK-X(B)

4.

5. UNLOCK(A)

6.

7. UNLOCK(B)

8.

9.

10.........

LOCK-S(A)

.................

LOCK-X(C)

UNLOCK(A)

UNLOCK(C)

.........

THIS IS JUST A SKELETON TRANSACTION

WHICH SHOWS HOW UNLOCKING AND

LOCKING WORKS WITH 2-PL. NOTE FOR:

� Transaction T1:

Growing Phase is from steps 1-3.

Shrinking Phase is from steps 5-7.

Lock Point at 3

Transaction T :� Transaction T2:

Growing Phase is from steps 2-6.

Shrinking Phase is from steps 8-9.

Lock Point at 6

