

 Memory --- large array of words or bytes
with its own address

 CPU fetches instructions from memory
according to the value of program counter

 Instructions cause additional loading from
and storing to specific memory address

 Fetches -- Decode -- Execute

 The collection of processes on the disk that
is waiting to be brought in to memory for
execution forms the input queue.

 Select one from input queue and load to
memory.

 Inconvenient to have first user process
physical address always at 0000

 Further, addresses represented in different ways at
different stages of a program’s life
◦ Source code addresses usually symbolic
◦ Compiled code addresses bind to relocatable

addressesaddresses
 i.e. “14 bytes from beginning of this module”

◦ Linker or loader will bind relocatable addresses to
absolute addresses
 i.e. 74014

◦ Each binding maps one address space to another

 Address binding of instructions and data to memory addresses can happen at three different
stages

◦ Compile time: If memory location known a priori, absolute code
can be generated; must recompile code if starting location
changes (early binding)

◦ Load time: Must generate relocatable code if memory location ◦ Load time: Must generate relocatable code if memory location
is not known at compile time (delayed binding)

◦ Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment
to another (late binding)

 Need hardware support for address maps (e.g., base and limit
registers)

 The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management
◦ Logical address – generated by the CPU; also referred to as

virtual address
◦ Physical address – address seen by the memory unit
Logical and physical addresses are the same in compile-time  Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

 Logical address space is the set of all logical addresses
generated by a program

 Physical address space is the set of all physical addresses
generated by a program

 Hardware device that at run time maps virtual to physical
address

 To start, consider simple scheme where the value in the
relocation register is added to every address generated by a user
process at the time it is sent to memory

◦ Base register now called relocation register

◦ MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the
real physical addresses

◦ Execution-time binding occurs when reference is made to location in
memory

◦ Logical address bound to physical addresses

 Still we considered that entire program and data of a
process must be in physical memory for the process
of execute.

 The size of the process is limited to size of physical
memory.

 For better utilization - Dynamic loading, ie a routine
is not loaded until it is called.

 Unused routines are never loaded.

 It is the responsibility of the users to design their
programs to take advantage of this method

 Static linking – system libraries and program code combined by
the loader into the binary program image

 Dynamic linking –linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate

memory-resident library routine
 Stub replaces itself with the address of the routine, and executes

the routine
Operating system checks if routine is in processes memory  Operating system checks if routine is in processes’ memory
address
◦ If not in address space, add to address space

 Dynamic linking is particularly useful for libraries
 System also known as shared libraries
 Consider applicability to patching system libraries

◦ Versioning may be needed

 Static linking – system libraries and program code combined by
the loader into the binary program image

 Dynamic linking –linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate

memory-resident library routine
 Stub replaces itself with the address of the routine, and executes

the routine
Operating system checks if routine is in processes memory  Operating system checks if routine is in processes’ memory
address
◦ If not in address space, add to address space

 Dynamic linking is particularly useful for libraries
 System also known as shared libraries
 Consider applicability to patching system libraries
 Dynamic linking needs help from Operating system.

 To keep in memory only those instructions
and data that are needed at any given time.

 Preparation of Mutually exclusive instruction
and data set to be loaded.

 Need not require any support from OS

 A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution

 Backing store – fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access
to these memory imagesto these memory images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out
so higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

 Does the swapped out process need to swap back in to same physical
addresses?

 Depends on address binding method
◦ Plus consider pending I/O to / from process memory space

 If next processes to be put on CPU is not in memory, need to
swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of
50MB/sec

◦ Swap out time of 2000 ms◦ Swap out time of 2000 ms

◦ Plus swap in of same sized process

◦ Total context switch swapping component time of 4000ms (4
seconds)

 Main memory must support both OS and user
processes

 Limited resource, must allocate efficiently
 Contiguous allocation is one early method
 Main memory usually into two partitions:

◦ Resident operating system, usually held in low ◦ Resident operating system, usually held in low
memory with interrupt vector

◦ User processes then held in high memory
◦ Each process contained in single contiguous

section of memory
1. Single Contiguous
2. Multiple Fixed Partitioned
3. Multiple Variable partitioned

 Relocation registers used to protect user
processes from each other, and from
changing operating-system code and data
◦ Base register contains value of smallest

physical address
◦ Limit register contains range of logical

addresses – each logical address must be addresses – each logical address must be
less than the limit register

◦ MMU maps logical address dynamically

 Multiple-partition allocation
◦ Degree of multiprogramming limited by number of partitions
◦ Variable-partition sizes for efficiency (sized to a given process’ needs)
◦ Hole – block of available memory; holes of various size are scattered

throughout memory
◦ When a process arrives, it is allocated memory from a hole large

enough to accommodate it
◦ Process exiting frees its partition, adjacent free partitions combined
◦ Operating system maintains information about:◦ Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size
◦ Produces the smallest leftover hole

Worst-fit: Allocate the largest hole; must also search

How to satisfy a request of size n from a list of free holes?

 Worst-fit: Allocate the largest hole; must also search
entire list
◦ Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utili
zation

 External Fragmentation – total memory space
exists to satisfy a request, but it is not
contiguous

 Internal Fragmentation – allocated memory may
be slightly larger than requested memory; this
size difference is memory internal to a
partition, but not being usedpartition, but not being used

 First fit analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation
◦ 1/3 may be unusable -> 50-percent rule

 Reduce external fragmentation by compaction

◦ Shuffle memory contents to place all free memory together
in one large block

◦ Compaction is possible only if relocation is dynamic, and is
done at execution time

◦ I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

