

 Memory --- large array of words or bytes
with its own address

 CPU fetches instructions from memory
according to the value of program counter

 Instructions cause additional loading from
and storing to specific memory address

 Fetches -- Decode -- Execute

 The collection of processes on the disk that
is waiting to be brought in to memory for
execution forms the input queue.

 Select one from input queue and load to
memory.

 Inconvenient to have first user process
physical address always at 0000

 Further, addresses represented in different ways at
different stages of a program’s life
◦ Source code addresses usually symbolic
◦ Compiled code addresses bind to relocatable

addressesaddresses
 i.e. “14 bytes from beginning of this module”

◦ Linker or loader will bind relocatable addresses to
absolute addresses
 i.e. 74014

◦ Each binding maps one address space to another

 Address binding of instructions and data to memory addresses can happen at three different
stages

◦ Compile time: If memory location known a priori, absolute code
can be generated; must recompile code if starting location
changes (early binding)

◦ Load time: Must generate relocatable code if memory location ◦ Load time: Must generate relocatable code if memory location
is not known at compile time (delayed binding)

◦ Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment
to another (late binding)

 Need hardware support for address maps (e.g., base and limit
registers)

 The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management
◦ Logical address – generated by the CPU; also referred to as

virtual address
◦ Physical address – address seen by the memory unit
Logical and physical addresses are the same in compile-time Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

 Logical address space is the set of all logical addresses
generated by a program

 Physical address space is the set of all physical addresses
generated by a program

 Hardware device that at run time maps virtual to physical
address

 To start, consider simple scheme where the value in the
relocation register is added to every address generated by a user
process at the time it is sent to memory

◦ Base register now called relocation register

◦ MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the
real physical addresses

◦ Execution-time binding occurs when reference is made to location in
memory

◦ Logical address bound to physical addresses

 Still we considered that entire program and data of a
process must be in physical memory for the process
of execute.

 The size of the process is limited to size of physical
memory.

 For better utilization - Dynamic loading, ie a routine
is not loaded until it is called.

 Unused routines are never loaded.

 It is the responsibility of the users to design their
programs to take advantage of this method

 Static linking – system libraries and program code combined by
the loader into the binary program image

 Dynamic linking –linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate

memory-resident library routine
 Stub replaces itself with the address of the routine, and executes

the routine
Operating system checks if routine is in processes memory Operating system checks if routine is in processes’ memory
address
◦ If not in address space, add to address space

 Dynamic linking is particularly useful for libraries
 System also known as shared libraries
 Consider applicability to patching system libraries

◦ Versioning may be needed

 Static linking – system libraries and program code combined by
the loader into the binary program image

 Dynamic linking –linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate

memory-resident library routine
 Stub replaces itself with the address of the routine, and executes

the routine
Operating system checks if routine is in processes memory Operating system checks if routine is in processes’ memory
address
◦ If not in address space, add to address space

 Dynamic linking is particularly useful for libraries
 System also known as shared libraries
 Consider applicability to patching system libraries
 Dynamic linking needs help from Operating system.

 To keep in memory only those instructions
and data that are needed at any given time.

 Preparation of Mutually exclusive instruction
and data set to be loaded.

 Need not require any support from OS

 A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution

 Backing store – fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access
to these memory imagesto these memory images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out
so higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

 Does the swapped out process need to swap back in to same physical
addresses?

 Depends on address binding method
◦ Plus consider pending I/O to / from process memory space

 If next processes to be put on CPU is not in memory, need to
swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of
50MB/sec

◦ Swap out time of 2000 ms◦ Swap out time of 2000 ms

◦ Plus swap in of same sized process

◦ Total context switch swapping component time of 4000ms (4
seconds)

 Main memory must support both OS and user
processes

 Limited resource, must allocate efficiently
 Contiguous allocation is one early method
 Main memory usually into two partitions:

◦ Resident operating system, usually held in low ◦ Resident operating system, usually held in low
memory with interrupt vector

◦ User processes then held in high memory
◦ Each process contained in single contiguous

section of memory
1. Single Contiguous
2. Multiple Fixed Partitioned
3. Multiple Variable partitioned

 Relocation registers used to protect user
processes from each other, and from
changing operating-system code and data
◦ Base register contains value of smallest

physical address
◦ Limit register contains range of logical

addresses – each logical address must be addresses – each logical address must be
less than the limit register

◦ MMU maps logical address dynamically

 Multiple-partition allocation
◦ Degree of multiprogramming limited by number of partitions
◦ Variable-partition sizes for efficiency (sized to a given process’ needs)
◦ Hole – block of available memory; holes of various size are scattered

throughout memory
◦ When a process arrives, it is allocated memory from a hole large

enough to accommodate it
◦ Process exiting frees its partition, adjacent free partitions combined
◦ Operating system maintains information about:◦ Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size
◦ Produces the smallest leftover hole

Worst-fit: Allocate the largest hole; must also search

How to satisfy a request of size n from a list of free holes?

 Worst-fit: Allocate the largest hole; must also search
entire list
◦ Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utili
zation

 External Fragmentation – total memory space
exists to satisfy a request, but it is not
contiguous

 Internal Fragmentation – allocated memory may
be slightly larger than requested memory; this
size difference is memory internal to a
partition, but not being usedpartition, but not being used

 First fit analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation
◦ 1/3 may be unusable -> 50-percent rule

 Reduce external fragmentation by compaction

◦ Shuffle memory contents to place all free memory together
in one large block

◦ Compaction is possible only if relocation is dynamic, and is
done at execution time

◦ I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

