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Software Life Cycle

• Software life cycle (or software process):

– series of identifiable stages that a software 

product undergoes during its life time: 

• Feasibility study

• requirements analysis and specification, 
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• requirements analysis and specification, 

• design

• coding 

• testing

• maintenance.



Life Cycle Model

• A software life cycle model (or  process model):

– a descriptive and diagrammatic model of 

software life cycle:

– identifies all the activities required for product 

development, 
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development, 

– establishes a precedence ordering among the 

different activities,

– Divides life cycle into phases.  



Life Cycle Model (CONT.)

• Several different activities may be carried out in 

each life cycle phase. 

– For example, the design stage might consist of:
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– For example, the design stage might consist of:

• structured analysis activity followed by  

• structured design activity.



Life Cycle Model (CONT.)

• Software life cycle:- SDLC(software development life 

cycle).

• SDLC:- graphically depicts different phase through 
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which software develop.

• Process:- all the activities taking place during software 

development.

• Methodology:- set of steps for carrying out a specific 

life cycle activity.



Life Cycle Model (CONT.)

• The development team must identify a suitable life 

cycle model:

and then adhere to it.
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and then adhere to it.

Primary advantage of adhering to a life cycle model:

helps development of software in a systematic 

and  disciplined manner.



Life Cycle Model (CONT.)

• When a program is developed by a single 

programmer ---
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programmer ---

– he has the freedom to decide his exact steps. 



Life Cycle Model (CONT.)

• When a software product is being developed by a 

team:  

– there must be a precise understanding among 
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– there must be a precise understanding among 

team members as to when to do what, 

– otherwise it would lead to chaos and project  

failure. 



Life Cycle Model (CONT.)

• A software project will never succeed if: 

– one engineer starts writing code,

– another concentrates on writing the test 
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document first, 

– yet another engineer first defines the file 

structure

– another defines the I/O for his portion first.



Life Cycle Model (CONT.)

• A life cycle model:

– defines  entry and exit criteria for every phase. 
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– A phase is considered to be complete:

• only when all its exit criteria are satisfied. 



Life Cycle Model (CONT.)

• The phase exit criteria for the software 

requirements specification phase: 

– Software Requirements Specification (SRS) 

document is complete, reviewed, and approved 
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document is complete, reviewed, and approved 

by the customer. 

• A phase can start: 

– only if its phase-entry criteria have been 

satisfied. 



Life Cycle Model (CONT.)

• It becomes easier for software project managers:

– to monitor the progress of the project. 
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– to monitor the progress of the project. 



Life Cycle Model (CONT.)

• When a life cycle model is adhered to, 

– the project manager can at any time fairly 

accurately tell, 

• at which stage  (e.g., design, code, test, etc. ) 
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• at which stage  (e.g., design, code, test, etc. ) 

of the project is. 

– Otherwise, it becomes very difficult to track the 

progress of the project.



Life Cycle Model (CONT.)

• Many life cycle models have been proposed. 

• We will confine our attention to a few important 

and commonly used models. 
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– classical waterfall model

– iterative waterfall, 

– evolutionary, 

– prototyping, 

– spiral model



(1)  Classical Waterfall Model

• Classical waterfall model divides life cycle into 

phases:

− feasibility study,  

− requirements analysis and specification, 

−
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− design, 

− coding and unit testing, 

− integration and system testing,  

− maintenance. 
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Classical Waterfall Model

Feasibility 
Study

Req.   Analysis

Design
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Design

Coding

Testing

Maintenance
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Relative Effort for Phases

• Phases between feasibility study 

and testing 

− known as development 

phases.

•• Among all life cycle phasesAmong all life cycle phases 20
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•• Among all life cycle phasesAmong all life cycle phases

−− maintenance phase consumes  maintenance phase consumes  

maximum effort.maximum effort.

• Among development phases,

− testing phase consumes the 

maximum effort.
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Classical Waterfall Model (CONT.)

• Most organizations usually define: 

− standards on the outputs (deliverables) 

produced at the end of every phase 

− entry and exit criteria for every phase. 
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• They also prescribe specific methodologies for:

− specification, 

− design, 

− testing,  

− project management, etc.
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Classical Waterfall Model (CONT.)

• The guidelines and methodologies  of an 

organization:

− called the organization's  software development software development 

methodologymethodology..
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methodologymethodology..
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a) Feasibility Study

• Main aim of feasibility study: determine whether 

developing the product 

− financially worthwhile

− technically feasible.
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− technically feasible.

• First roughly understand what the customer wants.
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Activities during Feasibility Study

• Work out an overall understanding of the 

problem.

• Formulate different solution strategies.

• Examine alternate solution strategies in 
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• Examine alternate solution strategies in 

terms of:

∗ resources required, 

∗ cost of development, and 

∗ development time.
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Activities during Feasibility Study

• Perform a cost/benefit analysis:

− to determine which solution is the best. 
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b) Requirements Analysis and Specification

• Aim of this phase:

− understand the exact requirements of the 

customer,  

−document them properly.
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−document them properly.

• Consists of two distinct activities: 

− requirements gathering and analysis 

− requirements specification.
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Goals of Requirements Analysis

• Collect all related data from the customer:

− analyze the collected data to clearly understand 

what the customer wants,
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− find out any inconsistencies and incompleteness 

in the requirements,

− resolve all inconsistencies and incompleteness.
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Requirements Gathering

• Gathering relevant data:

− usually collected from the end-users through 

interviews and discussions.

− For example,  for a business accounting 

software:
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software:

∗ interview all the accountants of the 

organization to find out their requirements. 
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Requirements Analysis (CONT.)

• The data you initially collect from the users:

− would usually contain several contradictions 
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and ambiguities: 

− each user  typically has only a partial and 

incomplete view of the system.
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c). Design

• Design  phase transforms  requirements  

specification:
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− into a  form suitable for implementation in 

some programming language.
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Design

• In technical terms:

− during design phase,  software architecture

is derived from the SRS document.

• Two design approaches: 
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• Two design approaches: 

− traditional approach, 

− object oriented approach. 
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Traditional Design Approach

• Consists of  two activities:

−Structured analysis 
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−Structured analysis 

−Structured design
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Structured Analysis Activity

• Identify all the functions to be performed.

• Identify data flow among the functions. 

• Decompose each function recursively into 

sub-functions.  
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sub-functions.  

− Identify data flow among the  subfunctions as 

well.
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Structured Analysis (CONT.)

• Carried out using Data flow diagrams (DFDs). 

• After structured analysis, carry out structured 

design:

− architectural design (or high-level design)
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− detailed design (or low-level design).
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Structured Design

• High-level design:

− decompose the system into modules,  

− represent invocation relationships among the 

modules. 
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• Detailed design:

− different modules designed in greater detail:

∗ data structures and algorithms for each module are 

designed.
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Object Oriented Design

• First identify various objects (real world entities)  

occurring in the problem:

− identify the relationships among the objects. 

− For example, the objects in a pay-roll software 

may be:
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may be:

∗ employees, 

∗managers, 

∗pay-roll register,

∗Departments, etc.
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Object Oriented Design (CONT.)

• OOD has several advantages:

− lower development effort, 

− lower development time, 

− better maintainability. 

34

− better maintainability. 
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d) Implementation

• Purpose of implementation phase (aka coding and 

unit testing phase):

− translate software design into source code. 
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Implementation

• During the implementation phase: 

− each module of the design is  coded, 

− each module is unit tested

− each module is documented.
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− each module is documented.
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Implementation (CONT.)

• The purpose of  unit testing:

− test if individual modules work correctly.  
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e).  Integration and System Testing

• Different modules are integrated in a planned 

manner:

− Normally integration is carried out through a 

number of steps.
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number of steps.

• During each integration step, 

− the partially integrated system is tested.
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f). System Testing

• After all the modules have been successfully

integrated and tested: 

− system testing is carried out.

• Goal of system testing:
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• Goal of system testing:

− ensure that the developed system functions 

according to its requirements as specified in the 

SRS document.
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g). Maintenance

• Maintenance of any software product: 

− requires much more effort than the effort to 

develop the product itself.

− development effort to maintenance effort is 

typically 40:60.
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typically 40:60.
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Maintenance (CONT.)

• Corrective maintenance:

− Correct errors which were not discovered during the 

product development  phases.

• Perfective maintenance: 

− Improve implementation of the system
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− Improve implementation of the system

− enhance functionalities of the system.

• Adaptive maintenance:

− Port software to a new environment, 

∗ e.g. to a new computer or to a new operating system.
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•No feedback path.

•Difficult to accommodate change request.

Waterfall model
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•Inefficient error corrections.

•No overlapping of phases.



(2) Iterative Waterfall Model

� Classical waterfall model is idealistic:

� assumes that no defect is introduced during any 

development activity.

� in practice: 

� defects do get introduced in almost every 
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� defects do get introduced in almost every 

phase of the life cycle. 



Iterative Waterfall Model (CONT.)

� Defects usually get detected much later in the life 

cycle: 

� For example, a design defect might go unnoticed till the 

coding or testing phase. 
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coding or testing phase. 



Iterative Waterfall Model (CONT.)

� Once a defect is detected:

� we need to go back to the phase where it was introduced

� Therefore we need feedback paths in the classical 
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� Therefore we need feedback paths in the classical 

waterfall model.



Iterative Waterfall Model (CONT.)

Feasibility 
Study

Req.   Analysis

Design

46

Coding

Testing

Maintenance



Iterative Waterfall Model (CONT.)

� Errors should be detected 
• in the same phase in which they are introduced.

� For example:
• if a design problem is  detected in the design phase itself
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Phase containment of errors

� Reason: rework must be carried out not only to the design

but also to  code and  test phases.

� The principle of detecting errors as close to its point of 

commitment as possible: 
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commitment as possible: 

� is known as phase containment of errors.

� Iterative waterfall model is by far the most widely used 

model.

� Almost every other model is derived from the waterfall model.



3).Prototyping Model

� Before  starting actual development, 

� a working prototype of the system should first be built.
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� A prototype is a toy implementation of a system.



Reasons for developing a prototype

� Illustrate to the customer:
� input data formats, messages, reports, or interactive 

dialogs. 

� Examine technical issues associated with product 

development: 
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development: 
� Often major design decisions  depend on issues like: 

� response time of a hardware controller, 

� efficiency of a sorting algorithm, etc.



Prototyping Model (CONT.)

� The third reason for developing a prototype is:

� it is impossible to ``get it right'' the first time.
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Prototyping Model (CONT.)

� Start with approximate requirements.

� Carry out a quick design.
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� Carry out a quick design.

� Prototype model is built using several  short-cuts: 



Prototyping Model (CONT.)

� The developed prototype is submitted to the 

customer for his evaluation:

� Based on the user feedback,  requirements are refined.

� This cycle continues until the user approves the 

prototype.
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prototype.

� The actual system is developed using the classical 

waterfall approach.



Prototyping Model (CONT.)

Requirements
Gathering Quick Design

Refine 
Requirements

Build 
Prototype

Customer 
Evaluation of 
Prototype Design

Implement

Customer 
satisfied
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Requirements

Test

Maintain



Prototyping Model (CONT.)

� Requirements analysis and specification phase 

becomes redundant.
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Prototyping Model (CONT.)

� Even though construction of a working prototype 

model involves additional cost 
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� Many user requirements get properly defined and  

technical issues get resolved.



4).Evolutionary Model

� Evolutionary model (aka successive versions or 

incremental  model):
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� The system is broken down into several modules which can 

be incrementally implemented and delivered.

� First develop the core modules of the system. 



Evolutionary Model (CONT.)

A
B

C

A A
B
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Advantages of Evolutionary Model

� Users get a chance to experiment with a partially developed 

system: 

� much before the full working version is released,
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� Helps finding  exact user requirements:

� much before  fully working system is developed.

� Core modules get tested thoroughly:

� reduces chances of  errors in final product.



Disadvantages of Evolutionary Model

� Often, difficult to subdivide problems into 

functional units: 

� evolutionary model is useful  for very large problems, 

� where it is easier to find modules for 
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� where it is easier to find modules for 

incremental implementation. 



Evolutionary Model with Iteration

� Many organizations use a combination of  iterative 

and incremental development:

� a new release may include new functionality

� existing functionality from the current release may also 
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� existing functionality from the current release may also 

have been modified.



Evolutionary Model with iteration

� Several advantages:

� Training can start on an earlier release

� customer feedback taken into account

� Markets can be created:
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� for functionality that has never been offered.

� Frequent releases allow developers to fix unanticipated 

problems quickly.



5).Spiral Model

� Proposed by Boehm in 1988.

� Each loop of the spiral represents a phase of the 

software process:

� the innermost loop might be concerned with system 

feasibility, 
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feasibility, 

� the next loop with system requirements definition,

� the next one with system design, and so on.

� There are no fixed phases in this model, the phases 

shown in the figure are just examples.



Spiral Model (CONT.)

Determine 
Objectives

Identify & 
Resolve Risks
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Develop Next 
Level of Product

Customer 
Evaluation of 
Prototype



Objective Setting (First Quadrant)

� Identify objectives  of the phase, 

� Examine the risks associated with these objectives.
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� Examine the risks associated with these objectives.

� Find alternate solutions possible. 



Risk Assessment and Reduction (Second Quadrant)

� For each identified project risk, 

� a detailed analysis is carried out. 

� Steps are taken to reduce the risk.
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Spiral Model (CONT.)

� Development and Validation (Third quadrantThird quadrant):

� develop and validate the next level of  the product. 

� Review and Planning (Fourth quadrantFourth quadrant): 

� review the  results  achieved so far with the customer and 

plan the next iteration around the spiral.  

67

plan the next iteration around the spiral.  

� With each iteration around the spiral:

� progressively more complete version of the software gets 

built.



Spiral Model as a meta model

� Subsumes all discussed models:

� a single loop spiral  represents waterfall model.

� uses an evolutionary approach  --

� iterations through the spiral are evolutionary levels. 

enables understanding and  reacting to risks during 
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� enables understanding and  reacting to risks during 

each  iteration along the spiral.  

� uses:

� prototyping as a risk reduction mechanism

� retains the step-wise approach of the waterfall model.  



Comparison of Different Life Cycle Models

� Iterative waterfall model

� most widely used model. 

� But, suitable only for well-understood problems. 

� Prototype model is suitable for projects not well 

understood:
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understood:

� user requirements

� technical aspects



Comparison of Different Life Cycle Models 
(CONT.)

� Evolutionary model is suitable for  large problems:
� can be decomposed into a set of modules that can be 

incrementally implemented,   

� incremental delivery of the system is acceptable  to the 

customer.  

The spiral model: 
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� The spiral model: 
� suitable for development of technically challenging 

software products that are subject to several kinds of 

risks. 



71


