
SOFTWARE ENGINEERING

Riya Roy

Department of BCA

1

Software Life Cycle

• Software life cycle (or software process):

– series of identifiable stages that a software

product undergoes during its life time:

• Feasibility study

• requirements analysis and specification,

2

• requirements analysis and specification,

• design

• coding

• testing

• maintenance.

Life Cycle Model

• A software life cycle model (or process model):

– a descriptive and diagrammatic model of

software life cycle:

– identifies all the activities required for product

development,

3

development,

– establishes a precedence ordering among the

different activities,

– Divides life cycle into phases.

Life Cycle Model (CONT.)

• Several different activities may be carried out in

each life cycle phase.

– For example, the design stage might consist of:

4

– For example, the design stage might consist of:

• structured analysis activity followed by

• structured design activity.

Life Cycle Model (CONT.)

• Software life cycle:- SDLC(software development life

cycle).

• SDLC:- graphically depicts different phase through

5

which software develop.

• Process:- all the activities taking place during software

development.

• Methodology:- set of steps for carrying out a specific

life cycle activity.

Life Cycle Model (CONT.)

• The development team must identify a suitable life

cycle model:

and then adhere to it.

6

and then adhere to it.

Primary advantage of adhering to a life cycle model:

helps development of software in a systematic

and disciplined manner.

Life Cycle Model (CONT.)

• When a program is developed by a single

programmer ---

7

programmer ---

– he has the freedom to decide his exact steps.

Life Cycle Model (CONT.)

• When a software product is being developed by a

team:

– there must be a precise understanding among

8

– there must be a precise understanding among

team members as to when to do what,

– otherwise it would lead to chaos and project

failure.

Life Cycle Model (CONT.)

• A software project will never succeed if:

– one engineer starts writing code,

– another concentrates on writing the test

9

document first,

– yet another engineer first defines the file

structure

– another defines the I/O for his portion first.

Life Cycle Model (CONT.)

• A life cycle model:

– defines entry and exit criteria for every phase.

10

– A phase is considered to be complete:

• only when all its exit criteria are satisfied.

Life Cycle Model (CONT.)

• The phase exit criteria for the software

requirements specification phase:

– Software Requirements Specification (SRS)

document is complete, reviewed, and approved

11

document is complete, reviewed, and approved

by the customer.

• A phase can start:

– only if its phase-entry criteria have been

satisfied.

Life Cycle Model (CONT.)

• It becomes easier for software project managers:

– to monitor the progress of the project.

12

– to monitor the progress of the project.

Life Cycle Model (CONT.)

• When a life cycle model is adhered to,

– the project manager can at any time fairly

accurately tell,

• at which stage (e.g., design, code, test, etc.)

13

• at which stage (e.g., design, code, test, etc.)

of the project is.

– Otherwise, it becomes very difficult to track the

progress of the project.

Life Cycle Model (CONT.)

• Many life cycle models have been proposed.

• We will confine our attention to a few important

and commonly used models.

14

– classical waterfall model

– iterative waterfall,

– evolutionary,

– prototyping,

– spiral model

(1) Classical Waterfall Model

• Classical waterfall model divides life cycle into

phases:

− feasibility study,

− requirements analysis and specification,

−

15

− design,

− coding and unit testing,

− integration and system testing,

− maintenance.

15

Classical Waterfall Model

Feasibility
Study

Req. Analysis

Design

16

Design

Coding

Testing

Maintenance

16

Relative Effort for Phases

• Phases between feasibility study

and testing

− known as development

phases.

•• Among all life cycle phasesAmong all life cycle phases 20

30

40

50

60

Relative Effort

17

•• Among all life cycle phasesAmong all life cycle phases

−− maintenance phase consumes maintenance phase consumes

maximum effort.maximum effort.

• Among development phases,

− testing phase consumes the

maximum effort.

0

10

20

R
eq

.
S

p

D
es

ig
n

C
o

d
in

g

T
es

t

M
a

in
tn

ce

17

Classical Waterfall Model (CONT.)

• Most organizations usually define:

− standards on the outputs (deliverables)

produced at the end of every phase

− entry and exit criteria for every phase.

18

• They also prescribe specific methodologies for:

− specification,

− design,

− testing,

− project management, etc.

18

Classical Waterfall Model (CONT.)

• The guidelines and methodologies of an

organization:

− called the organization's software development software development

methodologymethodology..

19

methodologymethodology..

19

a) Feasibility Study

• Main aim of feasibility study: determine whether

developing the product

− financially worthwhile

− technically feasible.

20

− technically feasible.

• First roughly understand what the customer wants.

20

Activities during Feasibility Study

• Work out an overall understanding of the

problem.

• Formulate different solution strategies.

• Examine alternate solution strategies in

21

• Examine alternate solution strategies in

terms of:

∗ resources required,

∗ cost of development, and

∗ development time.

21

Activities during Feasibility Study

• Perform a cost/benefit analysis:

− to determine which solution is the best.

22
22

b) Requirements Analysis and Specification

• Aim of this phase:

− understand the exact requirements of the

customer,

−document them properly.

23

−document them properly.

• Consists of two distinct activities:

− requirements gathering and analysis

− requirements specification.

23

Goals of Requirements Analysis

• Collect all related data from the customer:

− analyze the collected data to clearly understand

what the customer wants,

24

− find out any inconsistencies and incompleteness

in the requirements,

− resolve all inconsistencies and incompleteness.

24

Requirements Gathering

• Gathering relevant data:

− usually collected from the end-users through

interviews and discussions.

− For example, for a business accounting

software:

25

software:

∗ interview all the accountants of the

organization to find out their requirements.

25

Requirements Analysis (CONT.)

• The data you initially collect from the users:

− would usually contain several contradictions

26

and ambiguities:

− each user typically has only a partial and

incomplete view of the system.

26

c). Design

• Design phase transforms requirements

specification:

27

− into a form suitable for implementation in

some programming language.

27

Design

• In technical terms:

− during design phase, software architecture

is derived from the SRS document.

• Two design approaches:

28

• Two design approaches:

− traditional approach,

− object oriented approach.

28

Traditional Design Approach

• Consists of two activities:

−Structured analysis

29

−Structured analysis

−Structured design

29

Structured Analysis Activity

• Identify all the functions to be performed.

• Identify data flow among the functions.

• Decompose each function recursively into

sub-functions.

30

sub-functions.

− Identify data flow among the subfunctions as

well.

30

Structured Analysis (CONT.)

• Carried out using Data flow diagrams (DFDs).

• After structured analysis, carry out structured

design:

− architectural design (or high-level design)

31

− detailed design (or low-level design).

31

Structured Design

• High-level design:

− decompose the system into modules,

− represent invocation relationships among the

modules.

32

• Detailed design:

− different modules designed in greater detail:

∗ data structures and algorithms for each module are

designed.

32

Object Oriented Design

• First identify various objects (real world entities)

occurring in the problem:

− identify the relationships among the objects.

− For example, the objects in a pay-roll software

may be:

33

may be:

∗ employees,

∗managers,

∗pay-roll register,

∗Departments, etc.

33

Object Oriented Design (CONT.)

• OOD has several advantages:

− lower development effort,

− lower development time,

− better maintainability.

34

− better maintainability.

34

d) Implementation

• Purpose of implementation phase (aka coding and

unit testing phase):

− translate software design into source code.

3535

Implementation

• During the implementation phase:

− each module of the design is coded,

− each module is unit tested

− each module is documented.

36

− each module is documented.

36

Implementation (CONT.)

• The purpose of unit testing:

− test if individual modules work correctly.

37
37

e). Integration and System Testing

• Different modules are integrated in a planned

manner:

− Normally integration is carried out through a

number of steps.

38

number of steps.

• During each integration step,

− the partially integrated system is tested.

38

f). System Testing

• After all the modules have been successfully

integrated and tested:

− system testing is carried out.

• Goal of system testing:

39

• Goal of system testing:

− ensure that the developed system functions

according to its requirements as specified in the

SRS document.

39

g). Maintenance

• Maintenance of any software product:

− requires much more effort than the effort to

develop the product itself.

− development effort to maintenance effort is

typically 40:60.

40

typically 40:60.

40

Maintenance (CONT.)

• Corrective maintenance:

− Correct errors which were not discovered during the

product development phases.

• Perfective maintenance:

− Improve implementation of the system

41

− Improve implementation of the system

− enhance functionalities of the system.

• Adaptive maintenance:

− Port software to a new environment,

∗ e.g. to a new computer or to a new operating system.

41

•No feedback path.

•Difficult to accommodate change request.

Waterfall model

42

•Inefficient error corrections.

•No overlapping of phases.

(2) Iterative Waterfall Model

� Classical waterfall model is idealistic:

� assumes that no defect is introduced during any

development activity.

� in practice:

� defects do get introduced in almost every

43

� defects do get introduced in almost every

phase of the life cycle.

Iterative Waterfall Model (CONT.)

� Defects usually get detected much later in the life

cycle:

� For example, a design defect might go unnoticed till the

coding or testing phase.

44

coding or testing phase.

Iterative Waterfall Model (CONT.)

� Once a defect is detected:

� we need to go back to the phase where it was introduced

� Therefore we need feedback paths in the classical

45

� Therefore we need feedback paths in the classical

waterfall model.

Iterative Waterfall Model (CONT.)

Feasibility
Study

Req. Analysis

Design

46

Coding

Testing

Maintenance

Iterative Waterfall Model (CONT.)

� Errors should be detected
• in the same phase in which they are introduced.

� For example:
• if a design problem is detected in the design phase itself

47

Phase containment of errors

� Reason: rework must be carried out not only to the design

but also to code and test phases.

� The principle of detecting errors as close to its point of

commitment as possible:

48

commitment as possible:

� is known as phase containment of errors.

� Iterative waterfall model is by far the most widely used

model.

� Almost every other model is derived from the waterfall model.

3).Prototyping Model

� Before starting actual development,

� a working prototype of the system should first be built.

49

� A prototype is a toy implementation of a system.

Reasons for developing a prototype

� Illustrate to the customer:
� input data formats, messages, reports, or interactive

dialogs.

� Examine technical issues associated with product

development:

50

development:
� Often major design decisions depend on issues like:

� response time of a hardware controller,

� efficiency of a sorting algorithm, etc.

Prototyping Model (CONT.)

� The third reason for developing a prototype is:

� it is impossible to ``get it right'' the first time.

51

Prototyping Model (CONT.)

� Start with approximate requirements.

� Carry out a quick design.

52

� Carry out a quick design.

� Prototype model is built using several short-cuts:

Prototyping Model (CONT.)

� The developed prototype is submitted to the

customer for his evaluation:

� Based on the user feedback, requirements are refined.

� This cycle continues until the user approves the

prototype.

53

prototype.

� The actual system is developed using the classical

waterfall approach.

Prototyping Model (CONT.)

Requirements
Gathering Quick Design

Refine
Requirements

Build
Prototype

Customer
Evaluation of
Prototype Design

Implement

Customer
satisfied

54

Requirements

Test

Maintain

Prototyping Model (CONT.)

� Requirements analysis and specification phase

becomes redundant.

55

Prototyping Model (CONT.)

� Even though construction of a working prototype

model involves additional cost

56

� Many user requirements get properly defined and

technical issues get resolved.

4).Evolutionary Model

� Evolutionary model (aka successive versions or

incremental model):

57

� The system is broken down into several modules which can

be incrementally implemented and delivered.

� First develop the core modules of the system.

Evolutionary Model (CONT.)

A
B

C

A A
B

58

Advantages of Evolutionary Model

� Users get a chance to experiment with a partially developed

system:

� much before the full working version is released,

59

� Helps finding exact user requirements:

� much before fully working system is developed.

� Core modules get tested thoroughly:

� reduces chances of errors in final product.

Disadvantages of Evolutionary Model

� Often, difficult to subdivide problems into

functional units:

� evolutionary model is useful for very large problems,

� where it is easier to find modules for

60

� where it is easier to find modules for

incremental implementation.

Evolutionary Model with Iteration

� Many organizations use a combination of iterative

and incremental development:

� a new release may include new functionality

� existing functionality from the current release may also

61

� existing functionality from the current release may also

have been modified.

Evolutionary Model with iteration

� Several advantages:

� Training can start on an earlier release

� customer feedback taken into account

� Markets can be created:

62

� for functionality that has never been offered.

� Frequent releases allow developers to fix unanticipated

problems quickly.

5).Spiral Model

� Proposed by Boehm in 1988.

� Each loop of the spiral represents a phase of the

software process:

� the innermost loop might be concerned with system

feasibility,

63

feasibility,

� the next loop with system requirements definition,

� the next one with system design, and so on.

� There are no fixed phases in this model, the phases

shown in the figure are just examples.

Spiral Model (CONT.)

Determine
Objectives

Identify &
Resolve Risks

64

Develop Next
Level of Product

Customer
Evaluation of
Prototype

Objective Setting (First Quadrant)

� Identify objectives of the phase,

� Examine the risks associated with these objectives.

65

� Examine the risks associated with these objectives.

� Find alternate solutions possible.

Risk Assessment and Reduction (Second Quadrant)

� For each identified project risk,

� a detailed analysis is carried out.

� Steps are taken to reduce the risk.

66

Spiral Model (CONT.)

� Development and Validation (Third quadrantThird quadrant):

� develop and validate the next level of the product.

� Review and Planning (Fourth quadrantFourth quadrant):

� review the results achieved so far with the customer and

plan the next iteration around the spiral.

67

plan the next iteration around the spiral.

� With each iteration around the spiral:

� progressively more complete version of the software gets

built.

Spiral Model as a meta model

� Subsumes all discussed models:

� a single loop spiral represents waterfall model.

� uses an evolutionary approach --

� iterations through the spiral are evolutionary levels.

enables understanding and reacting to risks during

68

� enables understanding and reacting to risks during

each iteration along the spiral.

� uses:

� prototyping as a risk reduction mechanism

� retains the step-wise approach of the waterfall model.

Comparison of Different Life Cycle Models

� Iterative waterfall model

� most widely used model.

� But, suitable only for well-understood problems.

� Prototype model is suitable for projects not well

understood:

69

understood:

� user requirements

� technical aspects

Comparison of Different Life Cycle Models
(CONT.)

� Evolutionary model is suitable for large problems:
� can be decomposed into a set of modules that can be

incrementally implemented,

� incremental delivery of the system is acceptable to the

customer.

The spiral model:

70

� The spiral model:
� suitable for development of technically challenging

software products that are subject to several kinds of

risks.

71

