fl M

SOFTWARE ENGINEERING

Riya Roy
Department of BCA

Software Life Cycle

* Software life cycle (or software process):

— series of identifiable stages that a software
product undergoes during its life time:

* Feasibility study

* requirements analysis and specification,
* design

* coding

* testing

* maintenance.

Life Cycle Model

* A software life cycle model (or process model):

— a descriptive and diagrammatic model of
software life cycle:

— identifies all the activities required for product
development,

— establishes a precedence ordering among the
different activities,

— Divides life cycle into phases.

Life Cycle Model cow

* Several different activities may be carried out 1n

each life cycle phase.
— For example, the design stage might consist of:
* structured analysis activity followed by

* structured design activity.

Life Cycle Model cow

* Software life cycle:- SDLC(software development life
cycle).

* SDLC:- graphically depicts different phase through
which software develop.

* Process:- all the activities taking place during software
development.

* Methodology:- set of steps for carrying out a specific

life cycle activity.

o

Life Cycle Model cow

* The development team must identify a suitable life

cycle model:
and then adhere to 1it.
Primary advantage of adhering to a life cycle model:

helps development of software 1n a systematic

and disciplined manner.

Life Cycle Model cow

* When a program 1s developed by a single

programimer ---

— he has the freedom to decide his exact steps.

Life Cycle Model cow

* When a software product 1s being developed by a

team:;

— there must be a precise understanding among

team members as to when to do what,

— otherwise i1t would lead to chaos and project

failure.

Life Cycle Model cow

* A software project will never succeed if:
— one engineer starts writing code,
— another concentrates on writing the test
document first,
— yet another engineer first defines the file
structure

— another defines the I/O for his portion first.

Life Cycle Model cow

* A life cycle model:
— defines entry and exit criteria for every phase.
— A phase 1s considered to be complete:

 only when all its exit criteria are satisfied.

Life Cycle Model cow

* The phase exit criteria for the software
requirements specification phase:

— Software Requirements Specification (SRYS)
document is complete, reviewed, and approved
by the customer.

* A phase can start:

— only 1f 1ts phase-entry criteria have been
satisfied.

Life Cycle Model cow

* It becomes easier for software project managers:

— to monitor the progress of the project.

Life Cycle Model cow

* When a life cycle model 1s adhered to,

— the project manager can at any time fairly
accurately tell,
* at which stage (e.g., design, code, test, etc.)
of the project 1s.

— Otherwise, 1t becomes very difficult to track the
progress of the project.

Life Cycle Model cow

* Many life cycle models have been proposed.

* We will confine our attention to a few important

and commonly used models.
— classical waterfall model
— 1terative watertfall,

— evolutionary,

— prototyping,

_ — spiral model

-

(1) Classical Waterfall Model

e (lassical waterfall model divides life cycle into

phases:

— feasibility study,

— requirements analysis and specification,

— design,
— coding and unit testing,
— 1ntegration and system testing,

— maintenance.

4 ™
Classical Waterfall Model

Feasibility
y
IReq. Analysis I.1
I Design I.1
I Coding I.1
I Testing W

I Maintenancel

N

e
Relative Effort for Phases

60-

e Phases between feasibility study
and testing 501
— known as development 40

Relative Effort

phases. 30)-
e Among all life cycle phases 20-
— maintenance phase consumes 10,
maximum effort.
e Among development phases, 0 2 5 ¥ 7 2
— testing phase consumes the > 2 § = =
maximum effort. z = O E

/

-

Classical Waterfall Model o,

e Most organizations usually define:

— standards on the outputs (deliverables)
produced at the end of every phase

— entry and exit criteria for every phase.

e They also prescribe specific methodologies for:
— specification,
— design,
— testing,

— project management, etc.

-

Classical Waterfall Model o,

e The guidelines and methodologies of an

organization:

— called the organization's software development

methodology.

-

a) Feasibility Study

e Main aim of feasibility study: determine whether

developing the product
— financially worthwhile

— technically feasible.

e First roughly understand what the customer wants.

-

Activities during Feasibility Study

e Work out an overall understanding of the
problem.

e Formulate different solution strategies.

e Examine alternate solution strategies in
terms of:

* resources required,
* cost of development, and

* development time.

-

\
Activities during Feasibility Study
e Perform a cost/benefit analysis:
— to determine which solution is the best.

4 N
b) Requirements Analysis and Specification

e Aim of this phase:

—understand the exact requirements of the
customer,

— document them properly.

e Consists of two distinct activities:

—requirements gathering and analysis

—requirements specification.

N

4 N
Goals of Requirements Analysis

e Collect all related data from the customer:
— analyze the collected data to clearly understand
what the customer wants,
— find out any inconsistencies and incompleteness
in the requirements,

— resolve all inconsistencies and incompleteness.

N

-

Requirements Gathering

e Gathering relevant data:

— usually collected from the end-users through

interviews and discussions.

— For example, for a business accounting

software:
* mnterview all the accountants of the

organization to find out their requirements.

-

Requirements Analysis o

e The data you initially collect from the users:

— would usually contain several contradictions

and ambiguities:

— each user typically has only a partial and

incomplete view of the system.

-

c). Design
e Design phase transforms requirements

specification:

— 1nto a form suitable for implementation in

some programming language.

-

Design

e In technical terms:

— during design phase, software architecture
1s derived from the SRS document.

e Two design approaches:
— traditional approach,
—object oriented approach.

-

~
Traditional Design Approach
e Consists of two activities:
— Structured analysis
— Structured design

~ ™
Structured Analysis Activity

o Identify all the functions to be performed.
e [dentify data flow among the functions.

e Decompose each function recursively into
sub-functions.

— Identify data flow among the subfunctions as
well.

~ ™
Structured Analysis (o

e Carried out using Data flow diagrams (DFDs).

o After structured analysis, carry out structured
design:

— architectural design (or high-level design)
— detailed design (or low-level design).

-

Structured Design

e High-level design:

— decompose the system into modules,

— represent invocation relationships among the

modules.

o Detailed design:

— different modules designed 1n greater detail:

* data structures and algorithms for each module are

designed.

-

Object Oriented Design

e First identify various objects (real world entities)

occurring in the problem:

— 1dentify the relationships among the objects.
— For example, the objects 1n a pay-roll software

may be:
* employees,
* managers,
* pay-roll register,
* Departments, etc.

-

\
Object Oriented Design cow
e OOD has several advantages:
—lower development effort,
—lower development time,
— better maintainability.

-

d) Implementation

e Purpose of implementation phase (aka coding and
unit testing phase):

— translate software design into source code.

-

Implementation

e During the implementation phase:
— each module of the design is coded,
— each module 1s unit tested
— each module 1s documented.

-

Implementation cox

e The purpose of unit testing:

— test if individual modules work correctly.

-

e). Integration and System Testing

e Different modules are integrated in a planned
manner:

— Normally integration is carried out through a
number of steps.

e During each integration step,

— the partially integrated system 1s tested.

-

f). System Testing

o After all the modules have been successfully

integrated and tested:
— system testing 1s carried out.

e (Goal of system testing:

— ensure that the developed system functions
according to its requirements as specified in the

SRS document.

-

g). Maintenance

e Maintenance of any software product:

— requires much more effort than the effort to

develop the product itself.

— development effort to maintenance effort is

typically 40:60.

-~ R
Maintenance cow,

e (Corrective maintenance:

— Correct errors which were not discovered during the
product development phases.

e Perfective maintenance:

— Improve implementation of the system
— enhance functionalities of the system.

e Adaptive maintenance:

— Port software to a new environment,

* e.g. to a new computer or to a new operating system.

N .

Waterfall model

*No feedback path.

*Difficult to accommodate change request.

e[nefficient error corrections.

*No overlapping of phases.

-~

(2) lterative Waterfall Model

e (Classical waterfall model is idealistic:

e assumes that no defect is introduced during any
development activity.

e In practice:
defects do get introduced 1n almost every
phase of the life cycle.

-

lterative Waterfall Model conr,

e Defects usually get detected much later 1n the life
cycle:

e For example, a design defect might go unnoticed till the
coding or testing phase.

-

lterative Waterfall Model conr,

e Once a defect 1s detected:

e we need to go back to the phase where it was introduced

» Therefore we need feedback paths in the classical
waterfall model.

-
lterative Waterfall Model conr,

Ifeas}bility I1
SRTUY
IReq. Analysi41
A
I Design I1
A
I Coding I1

I I Testing |1
.. Vv Vv ¢ I Maintenancel

-

lterative Waterfall Model conr,

e Errors should be detected

e in the same phase in which they are introduced.

e For example:
e 1f a design problem 1s detected in the design phase itself

-

Phase containment of errors

e Reason: rework must be carried out not only to the design

but also to code and test phases.

e The principle of detecting errors as close to its point of
commitment as possible:

e is known as phase containment of errors.

e [Iterative waterfall model 1s by far the most widely used
model.

e Almost every other model is derived from the waterfall model.

-~

3).Prototyping Model

» Before starting actual development,

e a working prototype of the system should first be built.

e A prototype 1s a toy implementation of a system.

-

Reasons for developing a prototype

* Illustrate to the customer:
e input data formats, messages, reports, or interactive
dialogs.

e Examine technical issues associated with product

development:
e Often major design decisions depend on 1ssues like:

response time of a hardware controller,
efficiency of a sorting algorithm, etc.

-

Prototyping Model o

e The third reason for developing a prototype 1s:

e 1t 1s 1impossible to " get it right'' the first time.

-~

Prototyping Model o

e Start with approximate requirements.
e Carry out a quick design.

* Prototype model 1s built using several short-cuts:

-

Prototyping Model o

e The developed prototype 1s submitted to the
customer for his evaluation:
e Based on the user feedback, requirements are refined.

e This cycle continues until the user approves the
prototype.

e The actual system 1s developed using the classical
waterfall approach.

-
Prototyping Model o

Build

Prototype
Requirements Customer

i Customer)
Gathering —Puick Design ngtg%%gn OmDemgn

\Reflne Implement

Requirements ¢

Test

v

Maintain

-

Prototyping Model o

* Requirements analysis and specification phase

becomes redundant.

-

Prototyping Model o

e Even though construction of a working prototype

model involves additional cost

e Many user requirements get properly defined and

technical 1ssues get resolved.

e
4).Evolutionary Model

e Evolutionary model (aka successive versions or
incremental model):

e The system is broken down into several modules which can

be incrementally implemented and delivered.

* First develop the core modules of the system.

-
Evolutionary Model o,

C

-~

_

Advantages of Evolutionary Model

e Users get a chance to experiment with a partially developed
system:
e much before the full working version is released,

e Helps finding exact user requirements:
e much before fully working system 1s developed.

e Core modules get tested thoroughly:

e reduces chances of errors in final product.

-~

Disadvantages of Evolutionary Model

e Often, difficult to subdivide problems into
functional units:
e evolutionary model 1s useful for very large problems,
where 1t 1s easier to find modules for
incremental implementation.

Evolutionary Model with lteration

 Many organizations use a combination of iterative
and incremental development:
e a new release may include new functionality

e existing functionality from the current release may also
have been modified.

-~

Evolutionary Model with iteration

* Several advantages:
e Training can start on an earlier release
customer feedback taken into account
e Markets can be created:
for functionality that has never been offered.

e Frequent releases allow developers to fix unanticipated
problems quickly.

-

5).Spiral Model

* Proposed by Boehm 1n 1988.

e Each loop of the spiral represents a phase of the
software process:

e the innermost loop might be concerned with system
feasibility,

e the next loop with system requirements definition,

e the next one with system design, and so on.

e There are no fixed phases 1n this model, the phases
shown 1n the figure are just examples.

e
Spiral Model o,

Determine [dentify &
Objectives Resolve Risks
‘I!
Customer
Evaluation o Dgivelop Next
Prototype evel of Product

-

Objective Setting (First Quadrant)

* Identify objectives of the phase,

 Examine the risks associated with these objectives.

* Find alternate solutions possible.

-

Risk Assessment and Reduction (Second Quadrant)

e For each 1dentified project risk,

e a detailed analysis 1s carried out.

» Steps are taken to reduce the risk.

-

Spiral Model o,

* Development and Validation (Third quadrant):
e develop and validate the next level of the product.

e Review and Planning (Fourth quadrant):

e review the results achieved so far with the customer and
plan the next iteration around the spiral.

e With each iteration around the spiral:

e progressively more complete version of the software gets
built.

Spiral Model as a meta model

e Subsumes all discussed models:
e a single loop spiral represents waterfall model.
e uses an evolutionary approach --
iterations through the spiral are evolutionary levels.
e enables understanding and reacting to risks during
each iteration along the spiral.

® UuScCS.
prototyping as a risk reduction mechanism
retains the step-wise approach of the waterfall model.

-

Comparison of Different Life Cycle Models

e [terative waterfall model
e most widely used model.

e But, suitable only for well-understood problems.
e Prototype model 1s suitable for projects not well
understood:

* user requirements

e technical aspects

-

Comparison of Different Life Cycle Models

(CONT.)

e Evolutionary model 1s suitable for large problems:
e can be decomposed into a set of modules that can be
incrementally implemented,
e incremental delivery of the system is acceptable to the
customer.

e The spiral model:
e suitable for development of technically challenging

software products that are subject to several kinds of
risks.

71

