
Module 5
Parallel ProcessingParallel Processing

Jestin James M
Assistant Professor, Dept of Computer Science
Little Flower College, Guruvayoor

Topics to Cover
• Parallel Processing
• Taxonomy- SISD. MISD,

SIMD, MIMD structures
• CISC Vs RISC

• Pipelining
• Instruction Pipelining.
• Hazards,
• Reservation Tables • CISC Vs RISC

• Symmetric Multiprocessors
• Cache coherence
• MESI protocol
• Clusters
• Non Uniform Memory Access

• Reservation Tables
• Collision,
• Latency,
• Dynamic pipeline,
• Vector processing
• Vector processors

Parallel Processing

• parallel processing system is able to perform
concurrent data processing to achieve faster
execution time.execution time.

• Increasing the computational speed of a
computer system

• while an instruction is being executed in the
ALU, the next instruction can be read from
memory.

Parallel Processing

• The purpose of parallel processing is to speed up
the computer processing capability and increase
its throughputits throughput

• The amount of hardware increases with parallel
processing. and with it, the cost of the system
increase

• Parallel processing can be viewed from various
levels of complexity

Parallel Processing

• we distinguish between parallel and serial
operations by the type of registers used.

• shows one possible way of separating the • shows one possible way of separating the
execution unit into eight functional units
operating in parallel

PARALLELISM

• Instruction level parallelism
• Processor level- parallelism

Instruction –Level Parallelism
• A problem is broken into a discrete series of

instructions.
• The concept of pipelining is used so that you can • The concept of pipelining is used so that you can

overlap the execution of instructions which are
independent of one another.

• Overlap among instructions is called
Instruction-Level Parallelism(ILP)

• Instruction is evaluated in parallel
• Vector and array architecture are based on

instruction –level parallelism

Two types Instruction level

• Pipelining:
• Superscalar

Pipelining

• Execution of an instruction is divided into
multiple stages.

• In one single cycle multiple instructions are • In one single cycle multiple instructions are
being are executed at different stages.

• Overall throughput is increased
• but individual instruction takes longer time as

compared to non-pipeline system

Superscalar

• Deep pipelining allows short cycle(fast clock
rate)causing memory bottle neck.

• Hardware can issue multiple instructions • Hardware can issue multiple instructions
simultaneously.

Processor-level Parallelism

• Multiple processor that share the workload.
• It is achieved by breaking up a problem into

series of instructions and distributing the data series of instructions and distributing the data
among various functional unit.

• A single computer with multiple processors
• Or an more than one computer connected by

network cluster.

Multi processors

• Broken apart into discrete pieces of work that
can be solved simultaneously

• Execute multiple program instructions at any • Execute multiple program instructions at any
time

• Solved in less time with multiple computer
resources than with a single computer resource

To provide proper functioning

• 1.multiprocessor
• Inter process communication
• Synchronization• Synchronization

Parallel processors Categorized as

Pipeline computers: A pipeline computer
performs overlapped computation by explanting
the parallelismthe parallelism
 Array processors: Deals with repetitive

operations. These are SIMD architecture
Distributed Architeture : autonomous sub systems

which are capable of handling complete systems
Multiprocessors : The communication between

the processors takes place either through shared
memory area or through inter process messages

Parallel processors Categorized as

• Dataflow Architectures: Functionally distributed
architectures in which the operations are
triggered with the arrival of data at these triggered with the arrival of data at these
processors. MIMD

• VLSI computing Structure:

Uniprocessor architecture

• Single CPU
• Serial communication
• Fetch instruction• Fetch instruction
• Decode
• Execute

Uniprocessor

• Various ways to implement parallel processing
in uniprocessor Architecture

1. Multiplicity of functional unit: Multiple ALUs 1. Multiplicity of functional unit: Multiple ALUs
in one CPU

All independent with each other CDC6600
IBM 360/91 :Two parallel execution unit one for

fixed point arithmetic and other for floating
point arithemetic.

Uniprocessor

2. Parallelism and pipelining within the CPU:
Parallel adders

3. Overlapped CPU &I/o Operations: DMA,IOP3. Overlapped CPU &I/o Operations: DMA,IOP
4. Use of Hierarchical Memory system
5. Balancing of subsystems Bandwidth: Number

operations performed at unit time
6.Multiprogramming
7.Time Sharing

Architectural Classification Schemes

• Flynn’s Classification(1966): it is based on
multiplicity of instruction streams and data streams
in a computerin a computer

• Feng’s Classification(1972): Based on serial Vs
Parallel processing

• Shores Classification(1973): Based on organization
of constituent elements in t he computer

• Handlers Classification(1977): it is determined by
degree of parallelism and pipelining in various
subsystems

Flynn’s Classical Taxonomy

• Two independent dimensions
• “Instruction stream” and “Data stream”
• An instruction stream is a sequence of • An instruction stream is a sequence of

instructions read from memory
• Data stream: The operations performed on the

data in the processor constitutes a data stream

4 Flynn’s Categories

1. SISD- Single Instruction stream, Single data
Stream

2. SIMD-Single instruction stream multiple data 2. SIMD-Single instruction stream multiple data
stream

3. MISD-Multiple Instruction stream Single Data
Stream

4. MIMD-Multiple instruction stream ,multiple
data stream

SISD

• Single computer containing a control unit, a
processor unit, and a memory unit

• System may or may not have internal parallel • System may or may not have internal parallel
processing.

• Parallel processing may be achieved by multiple
functional unit or by pipeline processing

SISD

Processor
Memory

Control

SSID

• These are also called scalar processors
• One instruction stream on one clock cycle
• Deterministic execution• Deterministic execution
• Instruction are executed sequentially

SIMD

• Many processing units under a common control
unit

• All processors receive the same instruction from • All processors receive the same instruction from
control unit but operate on different items of
data

Prev instr

Load A(1)

Load B(1)

C(1)=A(1) * B(1)

Store c(1)

Next instr

Prev instr

Load A(2)

Load B(2)

C(2)=A(2) * B(2)

Store c(2)

Next instr

Prev instr

Load A(n)

Load B(n)

C(n)=A(n) * B(n)

Store c(n)

Next instr

MISD

• Single data stream is fed into multiple
processing units

• Each processing unit operates on the data • Each processing unit operates on the data
independently via independent instruction
stream

• Ex: Multiple cryptography algorithms
attempting to crack a single coded message

MIMD

• A computer system capable of processing several
programs at the same time

• It can be categorized as loosely coupled or tightly • It can be categorized as loosely coupled or tightly
coupled depending on sharing of data and
control

• Execution of instruction scheme can be
synchronous and asynchronous

CISC(Complex Instruction set
Computer)
• A computer with a large number of instructions
is classified as a complex instruction set

Computer, abbreviated CISC.Computer, abbreviated CISC.
It is designed to develop high level language
Compiler
It is easy to program
Makes efficient use of memory

CISC charaterstics

1. A large number of instructions-typically from
100 to 250 instructions

2. Some instructions that perform specialized 2. Some instructions that perform specialized
tasks and are used infrequently

3. A large variety of addressing modes-typically
from 5 to 20 different modes

4. Variable-length instruction formats
5. Instructions that manipulate operands in

memory

RISC(Reduced Instruction Set
Computer)
• 1. Relatively few instructions
• 2. Relatively few addressing modes
• 3. Memory access limited to load and store • 3. Memory access limited to load and store

instructions
• 4. All operations done within the registers of the

CPU
• 5. Fixed-length, easily decoded instruction format
• 6. Single-cycle instruction execution
• 7. Hardwired rather than micro programmed

control

Cache Coherence

• Any system that allows multiple processors to
access multiple copies of data

• If there exist two copies of data • If there exist two copies of data

Example

Shared

CPU

Cache

CPU

Cache

CPU

Cache

Shared Bus

Shared
Memory

Example Continue

CPU

Cache

CPU

Cache

CPU

Cache

Shared
Memory

X: 24

• Processor 1 reads X: obtains 24 from memory and
caches it

• Processor 2 reads X: obtains 24 from memory and
caches it

Cache Cache Cache

Shared Bus

Example continue

Write through
Write back policy
Write through both cache and memory is written Write through both cache and memory is written

in parallel

CPU CPU CPU
Shared

Memory

X: 24

• Processor 1 writes 32 to X: its locally cached copy is
updated

• Processor 3 reads X: what value should it get?
• processor 2 think it is 24
• Memory and Processor 1 thinks it is 32

CPU

Cache

CPU

Cache

CPU

Cache

Shared Bus

Memory

Write back policy problem

CPU

Cache

CPU

Cache

CPU

Cache

Shared
Memory

X: 24

• Processor 1 reads X: obtains 24 from memory and caches it
• Processor 2 reads X: obtains 24 from memory and caches it
• Processor 1 writes 32 to X: its locally cached copy is updated
• Processor 3 reads X: what value should it get?
• Memory and processor 2 think it is 24
• Processor 1 thinks it is 32

Shared Bus

Cache coherence

• If one processor modifies a shared cached value
then the other processor must get the latest
valuevalue

1. disallow private cache
shared cache means not close to CPU. Increases

memory access time

Cache coherence software solutions

2. Allow only non-shared and read only data to be
stored in the cache(Cacheable)

Compiler will tag data as cacheable and non-Compiler will tag data as cacheable and non-
cacheable

But it degrades due to software overhead and also
data to reside in the cache

Cache coherence software solutions

3. Use the centralised global table such that
writeable data exists in at least one cache

This table is maintained by compilerThis table is maintained by compiler
Each block in the table is identified RO(Read

Only) or RW(Read and write)
All cache will have RO
Only common cache will have RW block

Hardware approaches

1. Snooping Protocol : Cache controller listens
passively for bus activity .

• This is non scalable and is not appropriate for • This is non scalable and is not appropriate for
machine with tens of processors or more

2. Directory based: point-to-point mesaage to
handle coherence.

A memory structure called a directory and it
maintains information about data sharing

MESI
Any cache line can be in one of 4 states (2 bits)
• Modified - cache line has been modified, is

different from main memory - is the only cached different from main memory - is the only cached
copy. (multiprocessor ‘dirty’)

• Exclusive - cache line is the same as main
memory and is the only cached copy

• Shared - Same as main memory but copies may
exist in other caches.

• Invalid - Line data is not valid (as in simple
cache)

Pipelining

• Pipeline processing is an implementation
technique where arithmetic sub operations

• or the phases of a computer instruction cycle • or the phases of a computer instruction cycle
overlap in execution

Pipelining

• Pipelining is a technique of decomposing a
sequential process into suboperations, with each
subprocess being executed in a special dedicated subprocess being executed in a special dedicated
segment that operates concurrently with all
other segments

Different Pipelining

1. Arithmetic pipelining
2. Instruction pipelining

Instruction Pipeline

• Instruction cycle
1. Fetch the instruction from memory.
2. Decode the instruction.2. Decode the instruction.
3. Calculate the effective address.
4. Fetch the operands from memory.
5 . Execute the instruction.
6. Store the result in the proper place.

Instruction Pipeline

• An instruction pipeline reads consecutive
instructions from memory while previous
instructions are being executed in other segmentinstructions are being executed in other segment

• There are certain difficulties
1. Different segments may take different times to

operate on the incoming information
2. Two or more segments may require memory

access at the same time

Instruction Pipeline

• 3. Some segments are skipped for certain
operations. Ex: register mode instruction does
not need an effective address calculation.not need an effective address calculation.
Memory access conflict resolve -two memory

buses for accessing instructions and data in
separate modules

• The design of an instruction pipeline will be
most efficient if the instruction cycle is divided
into segments of equal duration

Pipeline Hazards
• Where one instruction cannot immediately

follow another
• Types of hazards• Types of hazards

▫ Structural hazards - attempt to use the same
resource by two or more instructions

▫ Control hazards - attempt to make branching
decisions before branch condition is evaluated

▫ Data hazards - attempt to use data before it is
ready

• Can always resolve hazards by waiting

Structural Hazards
• Attempt to use the same resource by two or

more instructions at the same time
• Example: Single Memory for instructions and • Example: Single Memory for instructions and

data
• Solutions

▫ Delay the second access by one clock cycle,
OR(Stall)

▫ Provide separate memories for instructions & data

Structural Hazards

• Having more than one resources
• Separate data &instruction memory if there is

some conflict in memory access. some conflict in memory access.
• Example 5. 7: Refer text
Stall
• low cost, simple
• Increases CPI (cycles per Instruction)
• use for rare case since stalling has performance

effect

Structural Hazards

Replicate resource
• good performance
• increases cost (+ maybe interconnect delay) • increases cost (+ maybe interconnect delay)
• useful for cheap or divisible resources
• Consistency problem . Different registers will

have different value

Data Hazards

• Data hazards occur when data is used before it is
ready

Data Hazards
Read After Write (RAW)

InstrJ tries to read operand before InstrI writes it

Execution Order is:
InstrI

InstrJ

I: add r1,r2,r3
J: sub r4,r1,r3

• Caused by a “Dependence” (in compiler nomenclature). This hazard
results from an actual need for communication.

Data Hazards
Write After Write (WAW)

InstrJ tries to write operand before InstrI writes it
▫ Leaves wrong result (InstrI not InstrJ)

• Called an “output dependence” by compiler writers

Execution Order is:
InstrI

InstrJ

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

Data Hazards
Write After Read (WAR)

InstrJ tries to write operand before InstrI reads i
▫ Gets wrong operand

Execution Order is:
InstrI

InstrJ

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

▫ Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

Data Hazards

• Solutions for Data Hazards
▫ Stalling
▫ Forwarding:▫ Forwarding:

 connect new value directly to next stage
▫ Reordering

Control Hazards
A control hazard is when we need to find
the destination of a branch, and can’t fetch
any new instructions until we know that
destination.

A branch is eitherA branch is either
▫ Taken: PC <= PC + 4 + Immediate
▫ Not Taken: PC <= PC + 4

Control Hazards - Solutions

• Delayed branches – code rearranged by
compiler to place independent instruction
after every branch (in delay slot).

Vector Processing

• In many science and engineering applications,
the problems can be formulated in terms of
vectors and matrices that lend themselves to vectors and matrices that lend themselves to
vector processing

Applications

• Long-range weather forecasting
• Petroleum explorations
• Seismic data analysis• Seismic data analysis
• Medical diagnosis
• Aerodynamics and space flight simulations
• Artificial intelligence and expert systems
• Mapping the human genome
• Image processing

Vector Operations

