

Introduction to Microprocessors

By,

Hitha Paulson Assistant Professor, Dept of Computer Science LF College, Guruvayoor

DEFINITION

•A **microprocessor** is a programmable digital electronic component that incorporates the functions of a central processing unit (CPU) on a single semiconducting integrated circuit (IC).

THREE BASIC CHARACTERISTICS DIFFERENTIATE MICROPROCESSORS:

- Instruction set: The set of instructions that the microprocessor can execute.
- bandwidth : The number of bits processed in a single instruction.
- clock speed : Given in megahertz (MHz), the clock speed determines how many instructions per second the processor can execute.

16 bit Processor
16 data lines
20 address lines
Total of 40 pins

DEFINITION : WORD LENGTH

- "word" is a term for the natural unit of data used by a particular computer design. A word is simply a fixed-sized group of bits that are handled together by the machine.
- 8086 word means two bytes

COMPANIES BEHIND
Intel
Motorola
AMD
Zilog
National Semiconductor

•8086 - Intel

INTEL MICROPROCESSORS

Microprocessor	Introduction	Introduction	Process	Transistor	Addressable	Bits
	Date	Speed	Technology	Count	Memory	
4004	Nov, 1971	108 kHz	10,000nm	2,300	640 bytes	4
8008	Apr, 1972	200 kHz	10,000nm	3,500	16 KB	8
808 0	Apr, 1974	2	6,000nm	4,500	64 KB	8
808 5	Mar, 1976	4.77 MHz	3,000nm	6,500	64 KB	8
808 6	Jun, 1978	4.77 MHz	3,000nm	29,000	1 M B	16
80286	Feb, 1982	6	1,500nm	134,000	16 M B	16
80386	Oct, 1985	16 MHz	1,500nm	275,000	4 G B	32
80486	Apr, 1989	25 MHz	1,000nm	1.2 Million	4 G B	32
Pentium	Mar, 1993	60 MHz	800nm	3.1 Million	4 G B	32
Pentium Pro	Nov, 1995	150 MHz	600nm	5.5 Million*	64 G B~	32
Pentium II	May, 1997	233 MHz	350nm	7.5 Million*	64 G B~	32
Pentium III	Feb, 1999	450 MHz	250nm	9.5 Million*	64 G B~	32
Pentium 4	Nov, 2000	1.4 GHz	180nm	42 Million	64 G B~	32
Itanium	May, 2001	800 MHz	180nm	295 Million	18 Terabytes	64
		* Transistor count does not include L2 cache				
		~ 4GB standard, 64GB with Paging Address Extensions				

PREREQUISITE

- 1. Addresses Space
- 2. General operation of a computer

 Address space :- addresses are composed of bit combinations and the set of all possible combinations for a given situation is called an address space.

 Word: Address of a word is the address of the low order byte

General Operation

GENERAL SEQUENCE- WITH OUT BRANCH

- IR holds the current instruction
- PC holds the address of the next instruction
- After execution of one instruction
 - Address in PC placed in address bus
 - Memory places next instruction in data bus
 - CPU inputs it to IR
 - Finds its length and updates PC

SEQUENCE WITH UNCONDITIONAL BRANCH

 Permits the normal sequence to be altered by replacing the contents of the Pc , the address of the next instruction , with an address determined by the branch instruction

SEQUENCE WITH CONDITIONAL BRANCH

 Address in PC determined by the present status of the processor

Ie.. PSW (processor status word)

SUBROUTINE CALL

SUBROUTINES

- Branching , but should save the content of PC(return address) before loading with new
- Not only return address also the contents of working registers.
- Use stack and stack pointers for this .

WORKING REGISTERS

- Address registers
 - For the temporary address calculations
 - Eg:- base register, index register

• Arithmetic registers

 for temporarily holding the operands and results of arithmetic operations because accessing a register is faster than accessing memory.

For performing arithmetic, logical, shifting and other operations.

