SEQUENCE, SERIES AND PROGRESSION

SUBJECT: BASIC NUMERICAL SKILLS

STEFY M M

DEPT OF COMMERCE

ACADEMIC YEAR: 2020-2021

ARITHMETIC PROGRESSION

IMPORTANT POINTS

Nth term

a: First term

n: Position of the term

d: common difference [d = a2 - a1]

General term

a, a+d, a+2d, a+3d.....

SUM OF N TERMS OF AN AP

Sn = n/2 [2a +(n-1)d]when last term is not given

• Sn =n/2 [first term + Last term]

When last term is given

1. Find the sum of 20 items of the series 3 5 7 9

2 . Find the sum of the series where I^{st} term is 5 and $I5^{th}$ term is -23 .

ARITHMETIC MEAN (AM)

• If a b c are in an AP then b is said to be the AM between a and c

$$AM = (a+b)/2$$

Eg: Find AM between 5 and 8

$$AM = (5+8)/2$$

$$= 13/2 = 6.5$$

ie, 6.5 is the AM between 5 and 8

IF SUM IS GIVEN

- 3 numbers in AP can be assumed as a-d,
 a,a+d
- 4 numbers in AP can be assumed as a-3d,
 a-d, a+d, a+3d

$$s_n = (a-d) + a + (a+d) = 9$$

substitute 3 in equation 2.

$$(a-d) \times a \times (a+d) = -165$$

$$(3-d) \times 3 \times (3+d) = -165$$

$$(3-d) \times (3+d) = -\frac{165}{3}$$

$$3^2 - d^2 = -55$$

$$q - d^2 = -55$$

$$-d^2 = -55 + 9 = -64$$

$$a^2 = 64$$

$$AP = -5, 8, 11$$

QUESTIONS

- I. The nth term of a sequence is given by an = 4n + 7. List the first four terms and find the d.
- 2. Which term of sequence 72 70 68 66 is 40.
- 3. The 6th and 17th terms of an AP are 19 and 41. Find the 40th term
- 4. How many terms of the sequence 54 51 48 Be taken so that their sum is 513. Explain the double answer.
- 5. Find the sum of all integers between 50 and 500 which are divisible by 7
- 6.

- 6. The sum of 3 numbers in AP is -3 and their product is 8. Find the numbers.
- 7. A man starts repaying a loan as a first instalment of Rs.100. If he increases the instalment by Rs.5 every month, what amount he will pay in the 30th instalment.
- 8. Find the sum of odd integers from 1 to 2001.
- 9. Find the number of natural numbers between 1 and 100 which are divisible by 3. Also find the sum of those terms.
- I. Find the following if AP, 125 and 155
 - (I)Find AM
 - (2) Insert 5 terms in between these terms
 - (3) Find the sum of these series

$$40 = 72 + -20 + 2$$

$$2n = 74-40$$

$$n = \frac{34}{2} = \frac{17}{2}$$

$$a + 5d = 19$$

$$- a + 16d = 41$$

$$-11d = -22$$

$$d = \frac{-22}{-11} = \frac{2}{-11}$$

Substitute in ex 1 d=2

$$\frac{a_{40}}{a_{1}}$$
 $a_{1} = a + (n-1)d$
= $a + (40-1)2$
= $a + 39 \times 2$

$$513 = \frac{9}{2} \left[2 \times 54 + (9-1)^{-3} \right]$$

1026 =
$$n[111+-3n]$$

1026 = $111n-3n^2$
 $3n^2-111n+1026=0$
 $3n^2-111n+1026=0$
 $3n^2-3n+342=0$
 $-b\pm\sqrt{b^2-4ac}$ $a=1$
 $2a$ $b=-37$
 $2a$ $c=342$
 $2x1$
 $2x1$
 $2x1$
 $37\pm\sqrt{1369-1368}$
 $2x1$
 $2x1$

5. d=7 a=56 an=497 sn= n [1st term + last term] 497 = 56+(9-1)7 497 = 56 + 70-7 497 = 49 + 75 7n = 448 n=448 = 64 Sn= 64 [56+497] = 32 x 553 = 17696 6. Let the 3 unknown numbers be and a and a-d + a + a + d = -3 30=-3 a = -1 (a-d) x a x (a+d) = 8 $(-1-d) \times -1 \times (-1+d) = 8$ (-1-d) x (-1+d) = -8 $4(1^2-d^2)=-8$ $+(1^2-d^2)=+8$

```
1-d^2 = -8
-d^2 = -8-1
  -d2=-9 506 50 77 5 60 5 8
   d=3.6, 44.3.
The 3 numbers are
 a-d = -1-3 = -4 ... -4 = -3, 2
ata = -1+3=2
a=100 d=5 n=30
  ago- 100+29×5
    = (00+145 = 245
:. AP is 100,105,110 ... 245.
a=1 an=2001 d=2
 AP=1,3,5 .... 2001
 2001 = 1+(n-1)2
 2001 = 1+27-2
 2001 = -1+29
  2002 = 27
  2002
   7 = 1001
 Sn = 1 [ First term + Last term]
```

```
= \frac{1001}{2} \left[ 1 + 2001 \right]
     = 500.5 x 2002
     = 1002001
 9. et al apr-100
 q. a= 3 an= 99 d=3
    an = a + (n-1)d
    99=3+(n-1)3
    99 = 3 + 3n - 3
     99 = 30
     3n=99
  Sn = \frac{n}{2} \left[ 2\alpha + (n-1)d \right]
    = \frac{33}{2} \left[ 2 \times 3 + (33 - 1) 3 \right]
    = 16.5 [ 6 + 32×3]
    = 16.5 × 102
10. 0=125 b=155
(i) AM = 125+155/2 = 140
```

: Number of terms 9

$$d=5$$

i terms. are 130, 135, 140, 145, 150

(III)
$$\frac{3}{2}$$
 $\frac{7}{2}$ $\left[2x_{125} + (1-1)^{5}\right]$