
C How to Program

.

Sr. Nisha C D
Assistant Professor, Dept. of Computer Science
Little Flower College, Guruvayoor

 The C language facilitates a structured and disciplined
approach to computer program design.

 In this chapter we introduce C programming and
present several examples that illustrate many important
features of C.features of C.

 In Chapters 3 and 4 we present an introduction to
structured programming in C.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 We begin by considering a simple C program.
 Our first example prints a line of text (Fig. 2.1).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Lines 1 and 2
 /* Fig. 2.1: fig02_01.c

A first program in C */

 begin with /* and end with */ indicating that these
two lines are a comment.two lines are a comment.

 You insert comments to document programs and
improve program readability.

 Comments do not cause the computer to perform any
action when the program is run.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Comments are ignored by the C compiler and do not
cause any machine-language object code to be
generated.

 Comments also help other people read and understand
your program.your program.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C99 also includes the C++ language’s // single-line
comments in which everything from // to the end of the
line is a comment.

 These can be used as standalone comments on lines by
themselves or as end-of-line comments to the right of a
partial line of code.partial line of code.

 Some programmers prefer // comments because they’re
shorter and they eliminate the common programming errors
that occur with /* */ comments.

 Line 3
 #include <stdio.h>

 is a directive to the C preprocessor.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Lines beginning with # are processed by the preprocessor
before the program is compiled.

 Line 3 tells the preprocessor to include the contents of the
standard input/output header (<stdio.h>) in the program.

 This header contains information used by the compiler
when compiling calls to standard input/output library
functions such as .
when compiling calls to standard input/output library
functions such as printf.

 Line 6
 int main(void)

 is a part of every C program.
 The parentheses after main indicate that main is a

program building block called a function.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C programs contain one or more functions, one of
which must be main.

 Every program in C begins executing at the function
main.

 The keyword int to the left of main indicates that  The keyword int to the left of main indicates that
main “returns” an integer (whole number) value.

 We’ll explain what it means for a function to “return a
value” when we demonstrate how to create your own
functions in Chapter 5.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 For now, simply include the keyword int to the left of
main in each of your programs.

 Functions also can receive information when they’re
called upon to execute.

 The void in parentheses here means that main does  The void in parentheses here means that main does
not receive any information.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 A left brace, {, begins the body of every function (line 7).
 A corresponding right brace ends each function (line 11).
 This pair of braces and the portion of the program between

the braces is called a block.
 Line 8 Line 8

 printf("Welcome to C!\n");

 instructs the computer to perform an action, namely to print
on the screen the string of characters marked by the
quotation marks.

 A string is sometimes called a character string, a message or
a literal.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The entire line, including printf, its argument within the
parentheses and the semicolon (;), is called a statement.

 Every statement must end with a semicolon (also known as
the statement terminator).

 When the preceding printf statement is executed, it
prints the message Welcome to C! on the screen.prints the message Welcome to C! on the screen.

 The characters normally print exactly as they appear
between the double quotes in the printf statement.

 Notice that the characters \n were not printed on the
screen.

 The backslash (\) is called an escape character.
 It indicates that printf is supposed to do something out

of the ordinary.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 When encountering a backslash in a string, the
compiler looks ahead at the next character and
combines it with the backslash to form an escape
sequence.

 The escape sequence \n means newline. The escape sequence \n means newline.
 When a newline appears in the string output by a
printf, the newline causes the cursor to position to
the beginning of the next line on the screen.

 Some common escape sequences are listed in Fig. 2.2.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Because the backslash has special meaning in a string,
i.e., the compiler recognizes it as an escape character,
we use a double backslash (\\) to place a single
backslash in a string.

 Printing a double quote also presents a problem  Printing a double quote also presents a problem
because double quotes mark the boundary of a string—
such quotes are not printed.

 By using the escape sequence \" in a string to be
output by printf, we indicate that printf should
display a double quote.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Line 10
 return 0; /* indicate that program ended
successfully */

 is included at the end of every main function.
 The keyword return is one of several means we’ll

use to exit a function.use to exit a function.
 When the return statement is used at the end of main

as shown here, the value 0 indicates that the program
has terminated successfully.

 The right brace, }, (line 12) indicates that the end of
main has been reached.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 We said that printf causes the computer to perform
an action.

 As any program executes, it performs a variety of
actions and makes decisions.

 In Chapter 3, we discuss this action/decision model of  In Chapter 3, we discuss this action/decision model of
programming in depth.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Standard library functions like printf and scanf are not
part of the C programming language.

 For example, the compiler cannot find a spelling error in
printf or scanf.

 When the compiler compiles a printf statement, it
merely provides space in the object program for a “call” to merely provides space in the object program for a “call” to
the library function.

 But the compiler does not know where the library functions
are—the linker does.

 When the linker runs, it locates the library functions and
inserts the proper calls to these library functions in the
object program.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Now the object program is complete and ready to be
executed.

 For this reason, the linked program is called an
executable.

 If the function name is misspelled, it’s the linker that  If the function name is misspelled, it’s the linker that
will spot the error, because it will not be able to match
the name in the C program with the name of any known
function in the libraries.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The printf function can print Welcome to C!
several different ways.

 For example, the program of Fig. 2.3 produces the
same output as the program of Fig. 2.1.

 This works because each printf resumes printing  This works because each printf resumes printing
where the previous printf stopped printing.

 The first printf (line 8) prints Welcome followed
by a space and the second printf (line 9) begins
printing on the same line immediately following the
space.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 One printf can print several lines by using
additional newline characters as in Fig. 2.4.

 Each time the \n (newline) escape sequence is
encountered, output continues at the beginning of the
next line.next line.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Our next program (fig. 3.8) uses the Standard Library
function scanf to obtain two integers typed by a user
at the keyboard, computes the sum of these values and
prints the result using printf.

 [In the input/output dialog of Fig. 2.8, we emphasize  [In the input/output dialog of Fig. 2.8, we emphasize
the numbers input by the user in bold.]

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Lines 8–10
 int integer1; /* first number to be input by user
*/
int integer2; /* second number to be input by user
*/
int sum; /* variable in which sum will be stored */

 are definitions.
 The names integer1, integer2 and sum are the names of  The names integer1, integer2 and sum are the names of

variables.
 A variable is a location in memory where a value can be stored

for use by a program.
 These definitions specify that the variables integer1,
integer2 and sum are of type int, which means that these
variables will hold integer values, i.e., whole numbers such as 7,
–11, 0, 31914 and the like.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 All variables must be defined with a name and a data type
immediately after the left brace that begins the body of
main before they can be used in a program.

 The preceding definitions could have been combined into a
single definition statement as follows:

 int integer1, integer2, sum; int integer1, integer2, sum;

 but that would have made it difficult to describe the
variables in corresponding comments as we did in lines 8–
10.

 A variable name in C is any valid identifier.
 An identifier is a series of characters consisting of letters,

digits and underscores (_) that does not begin with a digit.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 An identifier can be of any length, but only the first 31
characters are required to be recognized by C compilers
according to the C standard.

 C is case sensitive—uppercase and lowercase letters
are different in C, so a1 and A1 are different are different in C, so a1 and A1 are different
identifiers.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Definitions must be placed after the left brace of a
function and before any executable statements.

 A syntax error is caused when the compiler cannot
recognize a statement.

 The compiler normally issues an error message to help  The compiler normally issues an error message to help
you locate and fix the incorrect statement.

 Syntax errors are violations of the language.
 Syntax errors are also called compile errors, or

compile-time errors.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Line 12
 printf("Enter first integer\n"); /* prompt */

 prints the literal Enter first integer on the screen
and positions the cursor to the beginning of the next line.

 This message is called a prompt because it tells the user to  This message is called a prompt because it tells the user to
take a specific action.

 The next statement
 scanf("%d", &integer1); /* read an integer */

 uses scanf to obtain a value from the user.
 The scanf function reads from the standard input, which

is usually the keyboard.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 This scanf has two arguments, "%d" and &integer1.
 The first argument, the format control string, indicates the

type of data that should be input by the user.
 The %d conversion specifier indicates that the data should

be an integer (the letter d stands for “decimal integer”).be an integer (the letter d stands for “decimal integer”).
 The % in this context is treated by scanf (and printf as

we’ll see) as a special character that begins a conversion
specifier.

 The second argument of scanf begins with an ampersand
(&)—called the address operator in C—followed by the
variable name.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The ampersand, when combined with the variable
name, tells scanf the location (or address) in memory
at which the variable integer1 is stored.

 The computer then stores the value for integer1 at
that location.that location.

 The use of ampersand (&) is often confusing to novice
programmers or to people who have programmed in
other languages that do not require this notation.

 For now, just remember to precede each variable in
every call to scanf with an ampersand.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 When the computer executes the preceding scanf, it waits
for the user to enter a value for variable integer1.

 The user responds by typing an integer, then pressing the
Enter key to send the number to the computer.

 The computer then assigns this number, or value, to the
variable integer1.variable integer1.

 Any subsequent references to integer1 in this program
will use this same value.

 Functions printf and scanf facilitate interaction
between the user and the computer.

 Because this interaction resembles a dialogue, it is often
called conversational computing or interactive computing.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Line 15
 printf("Enter second integer\n"); /*
prompt */

 displays the message Enter second integer on
the screen, then positions the cursor to the beginning of
the next line.the next line.

 This printf also prompts the user to take action.
 The statement

 scanf("%d", &integer2); /* read an integer
*/

 obtains a value for variable integer2 from the user.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The assignment statement in line 18
 sum = integer1 + integer2; /* assign total to sum */

 calculates the sum of variables integer1 and integer2 and
assigns the result to variable sum using the assignment operator
=.

 The statement is read as, “sum gets the value of integer1 + The statement is read as, “sum gets the value of integer1 +
integer2.” Most calculations are performed in assignments.

 The = operator and the + operator are called binary operators
because each has two operands.

 The + operator’s two operands are integer1 and integer2.
 The = operator’s two operands are sum and the value of the

expression integer1 + integer2.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Line 20
 printf("Sum is %d\n", sum); /* print sum */

 calls function printf to print the literal Sum is followed
by the numerical value of variable sum on the screen.

 This printf has two arguments, "Sum is %d\n" and
sum..

 The first argument is the format control string.
 It contains some literal characters to be displayed, and it

contains the conversion specifier %d indicating that an
integer will be printed.

 The second argument specifies the value to be printed.
 Notice that the conversion specifier for an integer is the

same in both printf and scanf.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 We could have combined the previous two statements into the
statement

 printf("Sum is %d\n", integer1 + integer2);

 Line 22
 return 0; /* indicate that program ended
successfully */

 passes the value 0 back to the operating-system environment in  passes the value 0 back to the operating-system environment in
which the program is being executed.

 This value indicates to the operating system that the program
executed successfully.

 For information on how to report a program failure, see the
manuals for your particular operating-system environment.

 The right brace, }, at line 24 indicates that the end of function
main has been reached.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Variable names such as integer1, integer2 and sum
actually correspond to locations in the computer’s memory.

 Every variable has a name, a type and a value.
 In the addition program of Fig. 2.5, when the statement

(line 13)
 scanf("%d", &integer1); /* read an integer */

 is executed, the value typed by the user is placed into a
memory location to which the name integer1 has been
assigned.

 Suppose the user enters the number 45 as the value for
integer1.

 The computer will place 45 into location integer1 as
shown in Fig. 2.6.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Whenever a value is placed in a memory location, the value
replaces the previous value in that location; thus, placing a
new value into a memory location is said to be destructive.

 Returning to our addition program again, when the
statement (line 16)statement (line 16)

 scanf("%d", &integer2); /* read an integer */

 executes, suppose the user enters the value 72.
 This value is placed into location integer2, and memory

appears as in Fig. 2.7.
 These locations are not necessarily adjacent in memory.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Once the program has obtained values for integer1
and integer2, it adds these values and places the
sum into variable sum.

 The statement (line 18)
 sum = integer1 + integer2; /* assign total  sum = integer1 + integer2; /* assign total
to sum */

 that performs the addition also replaces whatever value
was stored in sum.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 This occurs when the calculated sum of integer1
and integer2 is placed into location sum
(destroying the value already in sum).

 After sum is calculated, memory appears as in Fig. 2.8.
 The values of integer1 and integer2 appear  The values of integer1 and integer2 appear

exactly as they did before they were used in the
calculation.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 They were used, but not destroyed, as the computer
performed the calculation.

 Thus, when a value is read from a memory location, the
process is said to be nondestructive.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The C arithmetic operators are summarized in Fig. 2.9.
 Note the use of various special symbols not used in algebra.
 The asterisk (*) indicates multiplication and the percent

sign (%) denotes the remainder operator, which is introduced
below.
In algebra, if we want to multiply a times b, we can simply  In algebra, if we want to multiply a times b, we can simply
place these single-letter variable names side by side as in
ab.

 In C, however, if we were to do this, ab would be
interpreted as a single, two-letter name (or identifier).

 Therefore, C requires that multiplication be explicitly
denoted by using the * operator as in a * b.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The arithmetic operators are all binary operators.
 For example, the expression 3 + 7 contains the binary operator +

and the operands 3 and 7.
 Integer division yields an integer result.
 For example, the expression 7 / 4 evaluates to 1 and the

expression 17 / 5 evaluates to 3.
C provides the remainder operator, %, which yields the remainder  C provides the remainder operator, %, which yields the remainder
after integer division.

 The remainder operator is an integer operator that can be used
only with integer operands.

 The expression x % y yields the remainder after x is divided by
y.

 Thus, 7 % 4 yields 3 and 17 % 5 yields 2.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Arithmetic expressions in C must be written in straight-
line form to facilitate entering programs into the
computer.

 Thus, expressions such as “a divided by b” must be
written as a/b so that all operators and operands
appear in a straight line.appear in a straight line.

 The algebraic notation

 is generally not acceptable to compilers, although some
special-purpose software packages do support more
natural notation for complex mathematical expressions.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Parentheses are used in C expressions in the same
manner as in algebraic expressions.

 For example, to multiply a times the quantity b + c we
write a * (b + c).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C applies the operators in arithmetic expressions in a
precise sequence determined by the following rules of
operator precedence, which are generally the same as
those in algebra:
◦ Operators in expressions contained within pairs of parentheses

are evaluated first. Thus, parentheses may be used to force the are evaluated first. Thus, parentheses may be used to force the
order of evaluation to occur in any sequence you desire.
Parentheses are said to be at the “highest level of
precedence.” In cases of nested, or embedded, parentheses,
such as
 ((a + b) + c)

◦ the operators in the innermost pair of parentheses are applied
first.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

◦ Multiplication, division and remainder operations are applied
first. If an expression contains several multiplication, division
and remainder operations, evaluation proceeds from left to
right. Multiplication, division and remainder are said to be on
the same level of precedence.

◦ Addition and subtraction operations are evaluated next. If an ◦ Addition and subtraction operations are evaluated next. If an
expression contains several addition and subtraction
operations, evaluation proceeds from left to right. Addition and
subtraction also have the same level of precedence, which is
lower than the precedence of the multiplication, division and
remainder operations.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The rules of operator precedence specify the order C
uses to evaluate expressions. When we say evaluation
proceeds from left to right, we’re referring to the
associativity of the operators.

 We’ll see that some operators associate from right to  We’ll see that some operators associate from right to
left.

 Figure 2.10 summarizes these rules of operator
precedence.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Figure 2.11 illustrates the order in which the operators
are applied.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 As in algebra, it is acceptable to place unnecessary
parentheses in an expression to make the expression
clearer.

 These are called redundant parentheses.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Executable C statements either perform actions (such
as calculations or input or output of data) or make
decisions (we’ll soon see several examples of these).

 We might make a decision in a program, for example,
to determine if a person’s grade on an exam is greater
than or equal to 60 and if it is to print the message than or equal to 60 and if it is to print the message
“Congratulations! You passed.”

 This section introduces a simple version of C’s if
statement that allows a program to make a decision
based on the truth or falsity of a statement of fact called
a condition.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 If the condition is met (i.e., the condition is true) the
statement in the body of the if statement is executed.

 If the condition is not met (i.e., the condition is false)
the body statement is not executed.

 Whether the body statement is executed or not, after the  Whether the body statement is executed or not, after the
if statement completes, execution proceeds with the
next statement after the if statement.

 Conditions in if statements are formed by using the
equality operators and relational operators summarized
in Fig. 2.12.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The relational operators all have the same level of
precedence and they associate left to right.

 The equality operators have a lower level of precedence
than the relational operators and they also associate left
to right.to right.

 In C, a condition may actually be any expression that
generates a zero (false) or nonzero (true) value.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 To avoid this confusion, the equality operator should be
read “double equals” and the assignment operator
should be read “gets” or “is assigned the value of.”

 As we’ll soon see, confusing these operators may not
necessarily cause an easy-to-recognize compilation necessarily cause an easy-to-recognize compilation
error, but may cause extremely subtle logic errors.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Figure 2.13 uses six if statements to compare two
numbers input by the user.

 If the condition in any of these if statements is true,
the printf statement associated with that if
executes.executes.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The program uses scanf (line 15) to input two
numbers.

 Each conversion specifier has a corresponding
argument in which a value will be stored.

 The first %d converts a value to be stored in variable  The first %d converts a value to be stored in variable
num1, and the second %d converts a value to be stored
in variable num2.

 Indenting the body of each if statement and placing
blank lines above and below each if statement
enhances program readability.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 A left brace, {, begins the body of each if statement (e.g.,
line 17).

 A corresponding right brace, }, ends each if statement’s
body (e.g., line 19).

 Any number of statements can be placed in the body of an
if statement.if statement.

 The comment (lines 1–3) in Fig. 2.13 is split over three
lines.

 In C programs, white space characters such as tabs,
newlines and spaces are normally ignored.

 So, statements and comments may be split over several
lines.

 It is not correct, however, to split identifiers.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Figure 2.14 lists the precedence of the operators
introduced in this chapter.

 Operators are shown top to bottom in decreasing order
of precedence.

 The equals sign is also an operator. The equals sign is also an operator.
 All these operators, with the exception of the

assignment operator =, associate from left to right.
 The assignment operator (=) associates from right to

left.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Some of the words we have used in the C programs in
this chapter—in particular int, return and if—are
keywords or reserved words of the language.

 Figure 2.15 contains the C keywords.
 These words have special meaning to the C compiler,  These words have special meaning to the C compiler,

so you must be careful not to use these as identifiers
such as variable names.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

