
Software Testing

Sr. Nisha C D
Assistant Professor, Dept. of Computer Science
Little Flower College, Guruvayoor

Levels of Testing

Unit Testing
 Integration Testing
 Validation Testing Validation Testing

 Regression Testing
 Alpha Testing
 Beta Testing

 Acceptance Testing

Unit Testing

 Algorithms and logic

Data structures (global and local)

 Interfaces Interfaces

 Independent paths

 Boundary conditions

 Error handling

Why Integration Testing Is
Necessary

One module can have an adverse effect
on another

 Subfunctions, when combined, may not
produce the desired major functionproduce the desired major function

 Individually acceptable imprecision in
calculations may be magnified to
unacceptable levels

Why Integration Testing Is
Necessary (cont’d)

 Interfacing errors not detected in unit
testing may appear

 Timing problems (in real-time systems)
are not detectable by unit testingare not detectable by unit testing

Resource contention problems are not
detectable by unit testing

Top-Down Integration

1. The main control module is used as a
driver, and stubs are substituted for all
modules directly subordinate to the
main module.main module.

2. Depending on the integration approach
selected (depth or breadth first),
subordinate stubs are replaced by
modules one at a time.

Top-Down Integration (cont’d)

3. Tests are run as each individual
module is integrated.

4. On the successful completion of a set
of tests, another stub is replaced with a of tests, another stub is replaced with a
real module

5. Regression testing is performed to
ensure that errors have not developed
as result of integrating new modules

Problems with Top-Down
Integration

 Many times, calculations are performed in the
modules at the bottom of the hierarchy

 Stubs typically do not pass data up to the
higher moduleshigher modules

 Delaying testing until lower-level modules are
ready usually results in integrating many
modules at the same time rather than one at a
time

 Developing stubs that can pass data up is
almost as much work as developing the actual
module

Bottom-Up Integration

 Integration begins with the lowest-level
modules, which are combined into clusters, or
builds, that perform a specific software
subfunctionsubfunction

 Drivers (control programs developed as stubs)
are written to coordinate test case input and
output

 The cluster is tested

 Drivers are removed and clusters are combined
moving upward in the program structure

Problems with Bottom-Up
Integration

 The whole program does not exist until
the last module is integrated

 Timing and resource contention Timing and resource contention
problems are not found until late in the
process

Validation Testing

 Determine if the software meets all of the
requirements defined in the SRS

 Having written requirements is essential

 Regression testing is performed to determine if Regression testing is performed to determine if
the software still meets all of its requirements in
light of changes and modifications to the
software

 Regression testing involves selectively
repeating existing validation tests, not
developing new tests

Alpha and Beta Testing

 It’s best to provide customers with an
outline of the things that you would like
them to focus on and specific test
scenarios for them to execute.scenarios for them to execute.

 Provide with customers who are actively
involved with a commitment to fix defects
that they discover.

Acceptance Testing

 Similar to validation testing except that
customers are present or directly
involved.involved.

Usually the tests are developed by the
customer

Test Methods

White box or glass box testing

 Black box testing

 Top-down and bottom-up for performing Top-down and bottom-up for performing
incremental integration

 ALAC (Act-like-a-customer)

Test Types

 Functional tests
 Algorithmic tests
 Positive tests
 Negative tests Negative tests
 Usability tests
 Boundary tests
 Startup/shutdown tests
 Platform tests
 Load/stress tests

Concurrent Development/
Validation Testing Model

 Conduct informal validation while development is still
going on

 Provides an opportunity for validation tests to be
developed and debugged early in the software developed and debugged early in the software
development process

 Provides early feedback to software engineers
 Results in formal validation being less eventful, since

most of the problems have already been found and
fixed

Validation Readiness Review

During informal validation developers
can make any changes needed in order
to comply with the SRS.

During informal validation QA runs tests During informal validation QA runs tests
and makes changes as necessary in
order for tests to comply with the SRS.

Validation Readiness Review
(cont’d)

During formal validation the only
changes that can be made are bug fixes
in response to bugs reported during
formal validation testing. No new formal validation testing. No new
features can be added at this time.

During formal validation the same set of
tests run during informal validation is run
again. No new tests are added.

Entrance Criteria for Formal
Validation Testing

 Software development is completed (a
precise definition of “completed” is required.

 The test plan has been reviewed, approved
and is under document control.and is under document control.

 A requirements inspection has been
performed on the SRS.

Design inspections have been performed on
the SDDs (Software Design Descriptions).

Entrance Criteria for Formal
Validation Testing (cont’d)

Code inspections have been performed on all
“critical modules”.

 All test scripts are completed and the
software validation test procedure document software validation test procedure document
has been reviewed, approved, and placed
under document control.

 Selected test scripts have been reviewed,
approved and placed under document
control.

Entrance Criteria for Formal
Validation Testing (cont’d)

 All test scripts have been executed at least
once.

CM tools are in place and all source code is
under configuration control.under configuration control.

 Software problem reporting procedures are in
place.

 Validation testing completion criteria have
been developed, reviewed, and approved.

Formal Validation

 The same tests that were run during informal
validation are executed again and the results
recorded.

Software Problem Reports (SPRs) are Software Problem Reports (SPRs) are
submitted for each test that fails.

 SPR tracking is performed and includes the
status of all SPRs (i.e., open, fixed, verified,
deferred, not a bug)

Formal Validation (cont’d)

 For each bug fixed, the SPR identifies the
modules that were changed to fix the bug.

 Baseline change assessment is used to ensure
only modules that should have changed have only modules that should have changed have
changed and no new features have slipped in.

 Informal code reviews are selectively conducted
on changed modules to ensure that new bugs
are not being introduced.

Formal Validation (cont’d)

 Time required to find and fix bugs (find-fix
cycle time) is tracked.

Regression testing is performed using the
following guidelines:following guidelines:
 Use complexity measures to help determine

which modules may need additional testing
 Use judgment to decide which tests to be rerun
 Base decision on knowledge of software design

and past history

Formal Validation (cont’d)

 Track test status (i.e., passed, failed, or not
run).

Record cumulative test time (cumulative
hours of actual testing) for software reliability hours of actual testing) for software reliability
growth tracking.

Exit Criteria for Validation
Testing

 All test scripts have been executed.
 All SPRs have been satisfactorily resolved.

(Resolution could include bugs being fixed,
deferred to a later release, determined not to deferred to a later release, determined not to
be bugs, etc.) All parties must agree to the
resolution. This criterion could be further
defined to state that all high-priority bugs
must be fixed while lower-priority bugs can be
handled on a case-by-case basis.

Exit Criteria for Validation
Testing (cont’d)

 All changes made as a result of SPRs have
been tested.

 All documentation associated with the
software (such as SRS, SDD, test software (such as SRS, SDD, test
documents) have been updated to reflect
changes made during validation testing.

 The test report has been reviewed and
approved.

