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GLYCOGENESIS — Biosynthesis of glycogen

Glucose

Hexokinase (in muscle)

1. Phosphorylation of glucose
Glucokinase (in liver)

Glucose 6-phosphate

2.Isomerisation of glucose 6 phosphatti Phosphoglucomutase

Glucose 1-phosphate | + UTP

3. Formation of Uridine Diphospho l UDP-glucose pyrophosphatase
Glucose UDP-glucose \ PPi Pyrophosphatase

2Pi + Energy

4. Polymerisation of Glucosyl units l Glycogen synthase

Glycogen Primer Pathway | @(1—4) glucosyl units | or policol Phosphate Pathway

5. Branching of the polymer chain+ l Amylotransglycosylase

Glycogen
[a(1—+4) and a(1—6) glucosyl units]

Diagram: Steps of glycogenesis
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A) PHOPHOROLYSIS

Forms unbranched linear chain | Glucan transferase

Breakdown a 1-6 glycosidic bond | Glucosidase
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B) HYDROLYSIS / AMYLOSIS

1. Alpha Amylosis

o glucosidase
o _amylase + H O Oligosaccharides

Glycogen

2.  Gamma Amylosis
I amylase + H O

Glycogen I' Dextrin + Glucose

a amylase

I’ Dextrin Glucose units

Glucose



Glycogen,,
Pi \l Glycogen Phosphorylase

Glycogen (n-1) + Glucose-1-P
l Phosphoglucomutase

Glucose-6-P

= ‘/l Glucose-6-Phosphatase

Glucose



Glycogen degradation cycle
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GLUCONEOGENESIS

* |s the metabolic process by which organisms
produce sugars (namely glucose) for catabolic
reactions from non-carbohydrate precursors
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Lactic acid

GLUCONEOGENESIS

Lactate Dehydrogenase a-keto acids

Pyruvate
l Pyruvate carbpxylase |

Citric acid cycle

Phosphoenolpyruvate . Oxaloacetate

Phosphoenol pyruvate x

Mitochondria
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Glycerol

Glyceraldehyde 3- phosphate
dehydrogenase

Glycerol 3 phosphate
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Fructose 1, 6-bisphosphate

Fructose 6-phosphate

Phosphoglucose isomerase

Glucose 6-phosphate

l Fructose 1, 6-bisphosphatase l |

l Glucose 6-phosphatasel IReguIatory enzymes



Glucose
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Role of NADH- Bottleneck in glycolysis

* For every glucose molecules in glycolytic pathway
2NAD molecules are reduced to 2NADH + 2H*
during oxidative phosphorylation of two molecules
of glyceraldehyde 3 phosphate.

* The stock of NAD™ is within the cell is very much
limited.

* This problem is solved by the reconversion of NADH
to NAD * during mitochondrial oxidative
phosphorylation.

* [n anaerobiosis this is not possible due to absence
of oxygen



n anaerobiosis NAD" is uninterruptedly
orovided by NADH dependent reduction of
oyruvic acid to lactic acid in cytoplasm

Conversion of Pyruvic Acid to Lactic Acid

The addition of two H* to pyruvic acid forms NAD and lactic acid

NADH + H* NAD

O H OH o
W | S ] iy
>
LDH

H—C—C—C H—C—C—C\
| A
H OH H H OH
Pyruvic acid Lactic acid

Figure 3.16




Energy balance sheet of Glycolysis
l ATP produced l ATP utilized Net energy
+- ‘
In absence of oxygen | 4 ATP 2ATP 2ATP
(anaerobic (Substrate level From glucose to
glycolysis) phosphorylation) glucose -6-p.
2ATP from 1,3 DPG. | From fructose -6-p
2ATP from to fructose 1,6 p.
phosphoenol
pyruvate
I - 4 -
In presence of 4ATP 2ATP 6 ATP
oxygen (aerobic (substrate level -From glucose to Or
glycolysis) phosphorylation) glucose -6-p. SATP
2ATPfrom 1,3 BPG. | From fructose -6-p
2ATP from to fructose 1,6 p.
phosphoenol
pyruvate.
It - -+ -{-
+ 4ATP or 6ATP
(from oxidation of 2
NADH+ H in

mitochondria).




Importance

* The only metabolic pathway common to all cells

* Only energy vielding process under oxygen free
anaerobic condition

e Supplies Carbon skeleton for synthesis of non
essential amino acids and glycerol part of alcohol



PASTEUR EFFECT

* Suppression of anaerobic respiration by oxygen

* Presence of oxygen increase aerobic respiration —
a process that will consume most of the cellular
ADP and Pi

* As a result glycolysis and fermentation will not get
sufficient supply of them to proceed.

 Further, ADP and Pi are the activators of some
glycolytic enzymes and ATP is an allosteric
inhibitor of glycolytic enzyme phosphofructo
kinase. This all together decrease rate of glycolysis
in the cell



CRABTREE EFFECT

e Reversal of Pasteur effect

* |s the suppression of aerobic respiration by high
concentration of glucose

* This is due to increased competition between
glycolytic and aerobic process for ADP, Pi and Pi



Fate of pyruvic acid
Three fates of pyruvate produced by glycolysis

Anaerobic Anaerobic
Aerobic Oxidation
(lactic acid fermentation) _ (alcoholic fermentation)

o%c/ 9 Pyruvate O\C/ 0 Pyruvate O%C/ 9 Pyruvate
| | l
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COA-SH |
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<|> CH3
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| Citric acid cycle and H=—C—OH
CH3 I

Oxidative phosphorylation



COOH COOH

| Mg* |
C=0+ ATP + Pi > G OP + AMP + PPi
' Ortho ” P_qu
CH 3 phosphate C H., phosphate
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CH, CH,
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Oxaloacetic acid

FORMATION OF OXALO ACETIC ACID



Conversion of Pyruvic acid to Acetyl COA

Inside Mitochondria
First step of Krebs cycle

Pyruvate
TPP
+ TPP
Pyruvate Acyl-lipoate
C()z Dehydrogenase CY p
AcyI-TPP Lipoyl acetyl

transferase

CoASH
Lipoic acid + FADH,
NAD

Lip-S
Acetyl CoA

\_te

s 2 SH

U;hy;drfo;,p:n};e Dihydrolipoic acid

Acetyl-CoA
FAD
NADH + H”




KREBS CYCLE
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Fumarate Cis-aconitate
FADH,

FA

ATP. Succinate
CoA-S
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H+
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Citric acid Cycle




L 3. Krebs Cycle (Citric Acid Cycle)

Lh-l _____

" Total net yield (2 tumns of krebs
cycle)

1. 2 - ATP (substrate-level
phosphorylation)

2. 6- NADH
3. 2 - FADH,

4. 4-CoO,
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Energy balance sheet of glucose

oxidation

e Old view (theoretical yield)

= Total ATP Yield

02
06
06
02
18
04

ATP - glycolysis (substrate-level phosphorylation)
ATP - converted from 2 NADH - glycolysis

ATP - converted from 2 NADH - grooming phase
ATP - Krebs cycle (substrate-level phosphorylation)
ATP - converted from 6 NADH - Krebs cycle
ATP - converted from 2 FADH, - Krebs cycle

38

ATP - TOTAL

copyright cmassengale
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The ATP Totals

e 2 Pyruvate molecules

* 6 molecules of CO,
e 2 molecules of ATP
e 8 molecules of NADP

* 2 FADH, Total: 2ATP

* 10NADH =30 ATP

* 2 FADH, = 4ATP
Total:34

More ATP 1 NADH : 3 ATP

produced 1 FADH2 :2 ATP
inthe ETC

e 38 ATP for every
glucose

\




* To pass the electrons from NADH to last
Oxygen acceptor, total of 10 protons are
transported from matrix to inter mitochondrial
membrane

* 4 protons via complex |, 4 via complex Ill and
2 via complex IV. And to make 1 ATP, 4 protons
move from inter mitochondrial membrane to
matrix via ATPase

* Thus for NADH— 10/4=2.5 ATP is produced
actually. Similarly for 1 FADH2, 6 protons are
moved so 6/4= 1.5 ATP is produced.



The ATP Totals

e 2 Pyruvate molecules

* 6 molecules of CO,
e 2 molecules of ATP
e 8 molecules of NADP

* 2 FADH, Total: 2ATP

* 10NADH = 25 ATP

* 2 FADH, = 3ATP
Total:34

More ATP 1 NADH : 2.5 ATP

produced 1 FADH2:1.5 ATP
inthe ETC

32 ATP for every
glucose

\




Purine synthesis

tyrosine metabolism
citrulline-NO cycle
Fumarate
hydrata
Hzoydra - Malate
Fumarate
\
\ Acetyl-CoA
Succinate " NADH
A X H,0
Vemimi NAD Oxaloacetate OA-SH
Malate Citrato
o-ketoglutarate-dependent A < dehydrogenase synthase’
enzyme superfamily Malate Citrate
\ H.
F 1
\\\ ( hyumara :. it
\ o
1 > Fumarate lsochrate -
I -~
A Succinate FADH, NAD(P)- S
A dehydrogenase FAD Isocitrate dehydrogenase N
S ) NAD(P)H+CO, (IDH2, IDH3)\
= ===~ Succinate '

Succinate:CoA Mog;g.e}ghglutarate =

ligase dehydrogenase” NAD® )
ATP/GTP P CoA-SHY
CoA-SH Succinyl-CoA y
NADH+CO,
ADP/GDP ‘ ~ Y
Pi <
f Isocitrate
Mitochondrial matrix R
' +
Key: Cytoplasm o-ketoglutarate NADP
@voAc NADPH+CO,

' Metabolite transporters
(inner membrane)

TRENDS in Molecular Medicine




Mitochondrion
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ELECTRON TRANSPORT CHAIN

Figure 6.10
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ELECTRON TRANSPORT CHAIN

o’ 2H¢ 2HY  2H \

NADH dehydrogenass Cytochrome b-oc, Cytochrome o
complex complex axidase complex synthasa
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SHUTTLE PATHWAY
(i) Malate- aspartate shuttle

NADH + H* NAD"

Aspartate /T-) Oxaloacetate ;A-) Malate

a-Ketoglutarate  Glutamate
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a-Ketoglutarate  Glutamate

Aspanate < \-4 Oxaloacetate

<7T Malate

NADH +H*  NAD®

Transport of NADH across inner mitochondrial membrane



(ii) Glycerol 3 phosphate shuttle system

Mitochondrial
Matrix
\'" = TR N
| \ Il (_\.B/\ j
v FADH2 |
‘ : @ ) QH2 ) Glycerol-3- :
u Phosphate
l Dehydrogenase 2
Inter- l o o S
membrane 2H 4H Vi Flavoprotein
Space HO\/U\/O —P-OH Ho/\V\O/P\OH Dehydrogenase
e OH
Dihydroxyacetone \ / Glycerol-3-
Phosphate (r— Phosphate
Phosphate
Dehydrogenase 1

2 NAD* 2 NADH + 2 H* ~

Glucoseg 2 Pyruvate NADH+H NAD+

Glycolysis

For transport of NADH produced in cytosol by glycolysis



