
INTRODUCTION TO JAVA

Don C Josson

Department of Computer Application

TOPICS OF THE REVIEW

� Essentials of object-oriented programming, in Java

� Java primitive data types, control structures, and
arrays

� Using some predefined classes:Using some predefined classes:

� Math

� JOptionPane, I/O streams

� String, StringBuffer, StringBuilder

� StringTokenizer

� Writing and documenting your own Java classes

2

SOME SALIENT CHARACTERISTICS OF JAVA

� Java is platform independent: the same program
can run on any correctly implemented Java system

� Java is object-oriented:

� Structured in terms of classes, which group data with
operations on that dataoperations on that data

� Can construct new classes by extending existing ones

� Java designed as

� A core language plus

� A rich collection of commonly available packages

� Java can be embedded in Web pages

3

JAVA PROCESSING AND EXECUTION

� Begin with Java source code in text files:

Model.java

� A Java source code compiler produces Java byte

codecode

� Outputs one file per class: Model.class

� May be standalone or part of an IDE

� A Java Virtual Machine loads and executes class

files

� May compile them to native code (e.g., x86) internally

4

COMPILING AND EXECUTING A JAVA PROGRAM

5

CLASSES AND OBJECTS

� The class is the unit of programming

� A Java program is a collection of classes
� Each class definition (usually) in its own .java file

� The file name must match the class name

� A class describes objects (instances)� A class describes objects (instances)
� Describes their common characteristics: is a blueprint

� Thus all the instances have these same characteristics

� These characteristics are:
� Data fields for each object

� Methods (operations) that do work on the objects

6

GROUPING CLASSES: THE JAVA API

� API = Application Programming Interface

� Java = small core + extensive collection of packages

� A package consists of some related Java classes:
� Swing: a GUI (graphical user interface) package

� AWT: Application Window Toolkit (more GUI)� AWT: Application Window Toolkit (more GUI)

� util: utility data structures (important to CS 187!)

� The import statement tells the compiler to make
available classes and methods of another package

� A main method indicates where to begin executing a
class (if it is designed to be run as a program)

7

A LITTLE EXAMPLE OF IMPORT AND MAIN

import javax.swing.*;
// all classes from javax.swing

public class HelloWorld { // starts a class
public static void main (String[] args) {
// starts a main method// starts a main method

// in: array of String; out: none (void)

}
}
� public = can be seen from any package

� static = not “part of” an object

8

PROCESSING AND RUNNING HELLOWORLD

� javac HelloWorld.java

� Produces HelloWorld.class (byte code)

� java HelloWorld

� Starts the JVM and runs the main method� Starts the JVM and runs the main method

9

REFERENCES AND PRIMITIVE DATA TYPES

� Java distinguishes two kinds of entities

� Primitive types

� Objects

� Primitive-type data is stored in primitive-type � Primitive-type data is stored in primitive-type
variables

� Reference variables store the address of an
object

� No notion of “object (physically) in the stack”

� No notion of “object (physically) within an object”

10

PRIMITIVE DATA TYPES

� Represent numbers, characters, boolean values

� Integers: byte, short, int, and long

� Real numbers: float and double

� Characters: char� Characters: char

11

PRIMITIVE DATA TYPES

Data type Range of values

byte -128 .. 127 (8 bits)

short -32,768 .. 32,767 (16 bits)

int -2,147,483,648 .. 2,147,483,647 (32 bits)int -2,147,483,648 .. 2,147,483,647 (32 bits)

long -9,223,372,036,854,775,808 (64 bits)

float +/-10-38 to +/-10+38 and 0, about 6 digits precision

double +/-10-308 to +/-10+308 and 0, about 15 digits precision

char Unicode characters (generally 16 bits per char)

boolean True or false

12

PRIMITIVE DATA TYPES (CONTINUED)

13

OPERATORS

1. subscript [], call (), member access .
2. pre/post-increment ++ --, boolean complement
!, bitwise complement ~, unary + -, type cast
(type), object creation new

3. * / %
binary + - (+ also concatenates strings)4. binary + - (+ also concatenates strings)

5. signed shift << >>, unsigned shift >>>
6. comparison < <= > >=, class test instanceof
7. equality comparison == !=
8. bitwise and &
9. bitwise or |

14

OPERATORS

11. logical (sequential) and &&

12. logical (sequential) or ||

13. conditional cond ? true-expr :
false-exprfalse-expr

14. assignment =, compound assignment += -=
*= /= <<= >>= >>>= &= |=

15

TYPE COMPATIBILITY AND CONVERSION

� Widening conversion:

� In operations on mixed-type operands, the numeric

type of the smaller range is converted to the numeric

type of the larger rangetype of the larger range

� In an assignment, a numeric type of smaller range

can be assigned to a numeric type of larger range

� byte to short to int to long

� int kind to float to double

16

DECLARING AND SETTING VARIABLES

� int square;

square = n * n;

� double cube = n * (double)square;

Can generally declare local variables where they are � Can generally declare local variables where they are

initialized

� All variables get a safe initial value anyway (zero/null)

17

REFERENCING AND CREATING OBJECTS

� You can declare reference variables

� They reference objects of specified types

� Two reference variables can reference the same

objectobject

� The new operator creates an instance of a class

� A constructor executes when a new object is

created

� Example: String greeting = ″hello″;

18

JAVA CONTROL STATEMENTS

� A group of statements executed in order is

written

� { stmt1; stmt2; ...; stmtN; }

� The statements execute in the order 1, 2, ..., N� The statements execute in the order 1, 2, ..., N

� Control statements alter this sequential flow of

execution

19

JAVA CONTROL STATEMENTS (CONTINUED)

20

JAVA CONTROL STATEMENTS (CONTINUED)

21

METHODS

� A Java method defines a group of statements as
performing a particular operation

� static indicates a static or class method

� A method that is not static is an instance method

� All method arguments are call-by-value� All method arguments are call-by-value
� Primitive type: value is passed to the method

� Method may modify local copy but will not affect caller’s
value

� Object reference: address of object is passed

� Change to reference variable does not affect caller

� But operations can affect the object, visible to caller

22

THE CLASS MATH

23

ESCAPE SEQUENCES

� An escape sequence is a sequence of two

characters beginning with the character \

� A way to represents special characters/symbols

24

THE STRING CLASS

� The String class defines a data type that is

used to store a sequence of characters

� You cannot modify a String object

� If you attempt to do so, Java will create a new object � If you attempt to do so, Java will create a new object

that contains the modified character sequence

25

COMPARING OBJECTS

� You can’t use the relational or equality

operators to compare the values stored in strings

(or other objects)

(You will compare the pointers, not the objects!)(You will compare the pointers, not the objects!)

26

THE STRINGBUFFER CLASS

� Stores character sequences

� Unlike a String object, you can change the

contents of a StringBuffer object

27

STRINGTOKENIZER CLASS

� We often need to process individual pieces, or

tokens, of a String

28

WRAPPER CLASSES FOR PRIMITIVE TYPES

� Sometimes we need to process primitive-type

data as objects

� Java provides a set of classes called wrapper

classes whose objects contain primitive-type classes whose objects contain primitive-type

values: Float, Double, Integer, Boolean,

Character, etc.

29

DEFINING YOUR OWN CLASSES

� Unified Modeling Language (UML) is a standard

diagram notation for describing a class

Field

30

Class

name

Field

valuesClass

name

Field

signatures:

type and name

Method signatures:

name, argument

types, result type

DEFINING YOUR OWN CLASSES (CONTINUED)

� The modifier private limits access to just this

class

� Only class members with public visibility can

be accessed outside of the class* (* but see be accessed outside of the class* (* but see

protected)

� Constructors initialize the data fields of an

instance

31

THE PERSON CLASS

// we have omitted javadoc to save space
public class Person {
private String givenName;
private String familyName;
private String IDNumber;private String IDNumber;
private int birthYear;

private static final int VOTE_AGE = 18;
private static final int SENIOR_AGE =
65;
...

32

THE PERSON CLASS (2)

// constructors: fill in new objects
public Person(String first, String
family,

String ID, int birth) {
this.givenName = first;
this.familyName = family;this.familyName = family;
this.IDNumber = ID;
this.birthYear = birth;

}
public Person (String ID) {
this.IDNumber = ID;

}

33

THE PERSON CLASS (3)

// modifier and accessor for
givenName

public void setGivenName (String
given) {
this.givenName = given;this.givenName = given;

}

public String getGivenName () {
return this.givenName;

}

34

THE PERSON CLASS (4)

// more interesting methods ...

public int age (int inYear) {

return inYear – birthYear;

}}

public boolean canVote (int inYear) {

int theAge = age(inYear);

return theAge >= VOTE_AGE;

}

35

THE PERSON CLASS (5)

// “printing” a Person

public String toString () {

return “Given name: “ + givenName +
“\n”

+ “Family name: “ + familyName + + “Family name: “ + familyName +
“\n”

+ “ID number: “ + IDNumber + “\n”

+ “Year of birth: “ + birthYear +
“\n”;

}

36

THE PERSON CLASS (6)

// same Person?

public boolean equals (Person per)
{

return (per == null) ? false :return (per == null) ? false :

this.IDNumber.equals(per.IDNumb
er);

}

37

ARRAYS

� In Java, an array is also an object

� The elements are indexes and are referenced

using the form arrayvar[subscript]

38

ARRAY EXAMPLE

float grades[] = new float[numStudents];

... grades[student] = something; ...

float total = 0.0;

for (int i = 0; i < grades.length; ++i) {for (int i = 0; i < grades.length; ++i) {

total += grades[i];

}

System.out.printf(“Average = %6.2f%n”,

total / numStudents);

39

ARRAY EXAMPLE VARIATIONS

// possibly more efficient

for (int i = grades.length; --i >= 0;
) {
total += grades[i];

}}

// uses Java 5.0 “for each” looping

for (float grade : grades) {
total += grade;

}

40

INPUT/OUTPUT USING CLASS JOPTIONPANE

� Java 1.2 and higher provide class

JOptionPane, which facilitates display

� Dialog windows for input

� Message windows for output� Message windows for output

41

INPUT/OUTPUT USING CLASS JOPTIONPANE
(CONTINUED)

42

CONVERTING NUMERIC STRINGS TO NUMBERS

� A dialog window always returns a reference to a

String

� Therefore, a conversion is required, using

static methods of class String:static methods of class String:

43

INPUT/OUTPUT USING STREAMS

� An InputStream is a sequence of characters

representing program input data

� An OutputStream is a sequence of characters

representing program outputrepresenting program output

� The console keyboard stream is System.in

� The console window is associated with

System.out

44

OPENING AND USING FILES: READING INPUT

import java.io.*;
public static void main (String[] args) {

// open an input stream
(**exceptions!)

BufferedReader rdr =BufferedReader rdr =
new BufferedReader(
new FileReader(args[0]));

// read a line of input

String line = rdr.readLine();
// see if at end of file

if (line == null) { ... }

45

OPENING AND USING FILES: READING INPUT (2)

// using input with StringTokenizer
StringTokenizer sTok =
new StringTokenizer (line);

while (sTok.hasMoreElements()) {
String token = sTok.nextToken();String token = sTok.nextToken();
...;

}
// when done, always close a
stream/reader

rdr.close();

46

ALTERNATE WAYS TO SPLIT A STRING

� Use the split method of String:

String[] = s.split(“\\s”);

// see class Pattern in

java.util.regexjava.util.regex

� Use a StreamTokenizer (in java.io)

47

OPENING AND USING FILES: WRITING OUTPUT

// open a print stream (**exceptions!)

PrintStream ps = new PrintStream(args[0]);
// ways to write output

ps.print(“Hello”); // a string
ps.print(i+3); // an integerps.print(i+3); // an integer
ps.println(“ and goodbye.”); // with NL
ps.printf(“%2d %12d%n”, i, 1<<i); // like C

ps.format(“%2d %12d%n”, i, 1<<i); // same
// closing output streams is very important!

ps.close();

48

SUMMARY OF THE REVIEW

� A Java program is a collection of classes

� The JVM approach enables a Java program written
on one machine to execute on any other machine
that has a JVM

� Java defines a set of primitive data types that are � Java defines a set of primitive data types that are
used to represent numbers, characters, and boolean
data

� The control structures of Java are similar to those
found in other languages

� The Java String and StringBuffer classes are
used to reference objects that store character strings

49

CHAPTER REVIEW (CONTINUED)

� Be sure to use methods such as equals and
compareTo to compare the contents of String objects

� You can declare your own Java classes and create objects
of these classes using the new operator

� A class has data fields and instance methods

Array variables can reference array objects� Array variables can reference array objects

� Class JOptionPane can be used to display dialog
windows for data entry and message windows for output

� The stream classes in package java.io read strings from
the console and display strings to the console, and also
support file I/O

50

51

