CHAPTER 2 THE REAL NUMBERS

ALGEBRAIC PROPERTIES OF R

• Given any two real numbers a and b , we can form two other real numbers, called their sum a + b and their product a .b and these real numbers satisfy the following axioms

• commutative property of \mathbb{R}

Associative property of addition

a+(b + c)=(a + b)+c
Existence of a zero element

a+o=a=o+a for all a belongs to \mathbb{R}

•Commutative property of multiplication

a .b=b . a for all a , b belongs to ℜ

Associative property of multiplication
 (a . b).c=a.(b . c)

• Existence of a unit element $a \cdot 1 = a = 1.a$ for all a in \mathbb{R} Existence of reciprocals For each $a \neq 0$ in \mathbb{R} there exists an element 1/a in \mathbb{R} such that $a \cdot (1/a) = (1/a) \cdot a = 1$

 Distributive property of multiplication over addition • $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ and • $(b + c).a = (b \cdot a) + (c \cdot a)$ for all a, b and c in \mathbb{R}

•Let a , b , c be elements of **R** (a)If a>b and b>c, then a>c (b) If a > b, then a + c > b + c. (c) If a > b and c > d, then a + c > b + cd

(d) If a > b and c > o, then c a > c b

THEOREM

(a) If z and a are elements in \mathbb{R} With z + a = a,

then z = o

(b) If u and b not equal to zero are elements in **R**

with $u \cdot b = b$, then u=1.

(a) a is in D than a a

THEOREM

(a) If $a \cdot b = o$, then either a = oor b = o.

(b) If $a \neq o$ and b in \mathbb{R} . are such that a. b = 1, then b = 1/a.

THANK YOU