CHAPTER 2

$$
\begin{aligned}
& \text { THE REAL } \\
& \text { NUMBERS }
\end{aligned}
$$

ALGEBRAIC PROPERTIES OF R

-Given any two real numbers a and b , we can form two other real numbers, called their sum $a+b$ and their product a. b and these real numbers satisfy the following axioms

- commutative property of R a +h-h h a for all 2 hin R
- Associative property of addition
$a+(b+c)=(a+b)+c$
- Existence of a zero element
$a+o=a=0+a$ for all a helonos to R
- Commutative property of multiplication
$\mathrm{a} . \mathrm{b}=\mathrm{b} . \mathrm{a}$ for all a, b belongs to R
-Associative property of multiplication
(a . b).c=a.(b.c)
- Existence of a unit element a . $1=\mathrm{a}=1 . \mathrm{a}$ for all a in R
- Existence of reciprocals For each a $\neq 0$ in R there exists an element $1 / a$ in R such that $a \cdot(1 / a)=(1 / a) \cdot a=1$
- Distributive property of multiplication over addition
- $\mathrm{a} \cdot(\mathrm{b}+\mathrm{c})=(\mathrm{a} \cdot \mathrm{b})+(\mathrm{a} \cdot \mathrm{c})$ and
$\cdot(b+c) \cdot a=(b \cdot a)+(c \cdot a)$
for all a, b and c in R
- Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be elements of R
(a)If $a>b$ and $b>c$, then $a>c$
(b)If $a>b$, then $a+c>b+c$.
(c)If $\mathrm{a}>\mathrm{b}$ and $\mathrm{c}>\mathrm{d}$, then $\mathrm{a}+\mathrm{c}>\mathrm{b}+$ d
(d)If $\mathrm{a}>\mathrm{b}$ and $\mathrm{c}>\mathrm{o}$, then $\mathrm{c} \mathrm{a}>\mathrm{c} \mathrm{b}$

THEOREM

(a) If z and a are elements in R With $\mathrm{z}+\mathrm{a}=\mathrm{a}$,
then $\mathrm{z}=\mathrm{o}$
(b) If u and b not equal to zero are elements in R
with $u . b=b$, then $u=1$.
(1) - in in $D+h$

THEOREM

(a)If $a \cdot b=0$, then either $a=0$ or $b=0$.
(b)If $\mathrm{a} \neq \mathrm{o}$ and b in R . are such that $\mathrm{a} . \mathrm{b}=1$, then $\mathrm{b}=1 / \mathrm{a}$.

THANK YOU

